Using a Data Acquisition Module and MATLAB to analyze sensor data

Technical report 1

Using a Data Acquisition Module and MATLAB to analyze sensor data
​​​​
Submitted by

Eric Coupal-Sikes

University of Southern California

3620 South Vermont Avenue, KAP 132

Los Angeles, California 90089-2533

Tel.
(310) 720 0859
Email
coupalsi@usc.edu
Date: April 20th, 2009
Work performed at and near USC

This page intentionally left blank

Abstract

Using a Micro-Controller Data Acquisition System that has a three-axis accelerometer, pressure, temperature, humidity, and light sensing abilities with an embedded microcontroller and circuitry that connects via mini USB, we wrote MATLAB code to capture and save the data from the available sensors. A moving average and a weighted band-pass filter are used. We then transformed the signal back to the time domain and check to see if any of our specified tolerance levels have been crossed.

Table of Contents

Summary

5

1. Introduction

6

2. Hardware architecture

6
3. Software

7
4. Performance measurements

9

4.1 Introduction

9
4.2 Moving Average

10
4.3 Frequency Spectrum

10
4.4 Filter Function

11
4.5 Re-Constructed Signal
4.6 Event Driven

12

5. Conclusions

12
6. Future Uses
 13
7. Distribution

14
Summary

Using the Micro Controller Data Acquisition Module we are able to steam and watch data in real time. A MATLAB code has been written to display the raw signal, its moving average, to filter it in the frequency domain, and to display both the frequency domain and the signal in the time domain after it was filtered in the frequency domain. Two figures will display; one with the acceleration data and another will all the other sensor data. At the end of the program, it will display all the transitions either going up or down through a specified tolerance level that the user gets prompted to specify.
1. Introduction

Using the microcontroller data acquisition module and MATLAB code, we set out to collect sensor data, use all the sensor data and some signal processing code in MATLAB to filter the raw signal and be able to extract a signal of our choosing. In this particular application, no specific frequency is desired, and we just collect all the data. In the event that the data makes a transition beyond a specified tolerance, then the program will alert the user and log the event.
2. Hardware architecture

The micro-controller data acquisition module that we used for our experiments connects via a mini-USB and has a humidity and temperature sensor, a pressure sensor, an ambient light sensor, a DC-DC converter, two digital to analog converters, and placement for a nano-electronic FET.

The humidity and temperature sensor, HTM1735, has a capacitive humidity-sensing element, and a negative co-efficient resistor for temperature sensing.
The pressure sensor, MPXA4250A6U, is a manifold absolute pressure sensor using a piezoresistive transducer
The accelerometer, MMA7260QT, is capable of sensing acceleration in all three axis. It can be set to have a range of either 1.5g of 6g.
The ambient light sensor, TPS852, is a photodiode and some circuitry that outputs a current proportional to the incoming light intensity.
The DC-DC converter, REG710NA-3.3, provides a regulated output voltage of 3.3V from an unregulated input voltage over a range of 2.2V to 5.5V. The output current is less than 30mA.
The Digital to analog converters, MCP4821, have 12-bit resolution, an internal band gap voltage reference of 2.048V
[image: image1.emf]USB-Microcontroller Data Acquisition Module

Block Diagram

USB Connector

Microcontroller

USB UART IC

US

B

Serial Clock

ADC

ADC

ADC

ADC

ADC

ADC

VCC GND

USB

-

Microcontroller Module

Humidity Sensor

Temperature Sensor

Pressure Sensor

Light Sensor

Accelerometer

DAC DAC

Power from PC’s USB port

Board’s GND and VCC

Nano-electronic FET

D G

R

d

S

Regulator: 5V to 3.3V

VCC – 5V

V – 3.3V

GND

[image: image2.png]humidity data
100

Humidity (%)

201 202 203 204 205 206 207 208 209

21
temPURRUR) data
w0
=
o 30
2
g 10
= ok
201 202 203 204 205 206 207 208 209 21
prelgiRddata
1050
£ 1045
2 1040
[
10351t
201 202 203 204 205 206 207 208 209 21
illuriEAd8)data
5
=4
g3
22
E
ER
ol . T 1
201 202 203 204 205 206 207 208 209 21

Time (s)

100

Humidity (%)

-100

S &

Temperature € C)
8o

s

Iluminance (1)

humidity data = Frequency spectrum of signal
g M i
5
7y
T o ——
W 16 18 20 =T 50 00 180 200
Time (s)
temperature data = Frequency spectrum of signal
g M i
5
7y
S o————
W 16 18 20 =T 50 00 180 200
Time (s)
pressure data = Frequency spectrum of signal
g M i
5
7y
S o————
W 16 18 20 =T 50 00 180 200
Time (s)
iluminance data = Frequency spectrum of signal
g 1
5
&1
g0 0

w6 18 20
Time (s)

0 5 10 15 20 25

[image: image3.png]DLP-232PC USB-Microcontroller

* PICISF2410

2 /S - Moot

© MMATZ60QT
Accelerometer

| HTM1735 Humidity & '
Temperature Sensor
)

Figure 2 - Block Diagram of the inner workings of the USB Module
3. Software

This new version of the software is able to stream the data in real time. The software given to us was limited to only the acceleration data. I have modified the code so that, it will take in all the data from mode ‘2’ of the device, and then take a moving average, then take the Fourier transform of the moving average, then apply a filter in the frequency domain, and then transform it back to the real time domain. It will update the plot every 10 points, and you see the real time effects of changing the inputs to the sensor dongle. I further tried to improve the code and make it run faster. I also added some event driven sections. The user gets prompted for certain allowable tolerances for each sensor, if in some point in time the sensor reads data that crosses over one of the tolerances, the program outputs a + or – 1 to indicate increasing or decreasing across the tolerance barrier.
The beginning of the code is spent initializing the variables that we will use and the format of the plots. There are two different figures that pop up once the program is run. The first shows the time signal, the moving average signal, the frequency-domain-filtered time signal, and the frequency domain signal of just the x, y, and z accelerations. The second window that pops up, shows the same information, but for the humidity, temperature, pressure, and light data.
The user has to input the port the serial device is plugged into. The type of acceleration resolution, either 1.5g or 6g, and also the tolerances for each sensor.

For example:

figure(1)
 subplot(3,4,[1 2])
timevec=timer_dbo.get(memory_size);
data=alldata_dbo.get(memory_size);
data_ma=alldatama_dbo.get(memory_size);
figh(1,1)=plot(timevec,data(:,1),'-');
hold on
figbh(1,1)=plot(timevec,data_ma(:,1),'r-');
hold off
figah(1,1)=gca;
set(figah(1,1), 'xlim', [timevec(1) timevec(memory_size)+plottimeoffset]);
ylim([-5 5])
set(figh(1,1),'erasemode','normal');
title('Time evolution of accelerometer data')
ylabel('x-accel');
figure(1)
subplot(3,4,3)
data_filtered=filtered_dbo.get(memory_size);
figh(1,2)=plot(timevec,data_filtered(:,1),'-');
figah(1,2)=gca;
set(figah(1,2), 'xlim', [timevec(1) timevec(memory_size)+plottimeoffset]);
ylim([-5 5])
set(figh(1,2),'erasemode','normal');
title('Frequency domain filtered accelerometer data')
ylabel('x-accel');
subplot(3,4,12)
[ax,figh(3,3),figbh(3,3)]=plotyy(frequs(2:numplotpoints),abs(signal_fft(2:numplotpoints,3)),...
 frequs(1:numplotpoints),abs(used_filter_spectrum(1:numplotpoints)),'stem','plot');
figah(3,3)=ax(1);
fig33bah=ax(2);
set(figah(3,3),'ylim',[0 3])
set(fig33bah,'ylim',[0 1.05])
set(figh(3,3),'erasemode','normal');
xlabel('Frequency (Hz)');
The above code is used to initialize the figure for one data stream, and its filtered forms.
We input the data into a matrix the has the number of rows equal to the number of data points to be analyzed at one time, and the number of columns equal to the number of sensor data streams.

The moving average of the data is done with this code:

alldata_dbo.add(new_data(:,2:8));
% compute moving average of most recently added data and add to ma_db
% database
[rows_read,ncol]=size(new_data);
data_to_average=alldata_dbo.get(rows_read+moving_average_n-1);%obtain moving_average_n-1 more data to avoid transients
 data_to_average=filter(ones(1,moving_average_n)/moving_average_n,1,data_to_average);%compute moving average
 alldatama_dbo.add(data_to_average(moving_average_n:moving_average_n+rows_read-1,:));
After the moving average is calculated, the averaged data now gets passed on to have its Fast Fourier Transform taken. Once the signal is in the frequency domain, a weighted band pass filter is applied to it. This weighted band pass filter, weights a specific range of frequencies that are user specified, and nullifies all those not in the band pass. This task is completed with the code below

% compute fft of num_rows of moving average data, filter it in the
% frequency domain, compute inverse fft and store the filtered signal
 signal_fft=alldatama_dbo.get(fftsize);%get ma filtered data
% signal_fft=fft(hammingvector.*signal_fft)/(fftsize/2)/2;% take Fourier transform
 signal_fft=fft(signal_fft)/(fftsize/2);% take Fourier transform
 signal_fft=signal_fft.*(used_filter_spectrum.'*ones(1,7));% lp-filter the signal
 filtered_signal=ifft(signal_fft)*(fftsize/2);
 filtered_dbo.add(filtered_signal(fftsize-rows_read+1:fftsize,:));%only add new data
 %compute time vector

Once we have the data collected and crunched, it is time to update our graphs so that we get the feeling of watching the data in real time. We update the variables that the graph was dependant on, and then force the program to graph now. This is done with the following code

for i = 1:7
 for j = 1:3
 if j ==1;
 set(figh(i,j),'xdata',timevec(1:everynthpointtoplot:end),'ydata',data(1:everynthpointtoplot:memory_size,i));
 set(figbh(i,j),'xdata',timevec(1:everynthpointtoplot:end),'ydata',data_ma(1:everynthpointtoplot:memory_size,i));
 set(figah(i,j), 'xlim', [timevec(1) timevec(memory_size)+0.1]);
 elseif j ==2;
 set(figh(i,j),'xdata',data_t,'ydata',data_filtered(:,i));
 set(figah(i,j), 'xlim', [data_t(1) data_t(memory_size)+0.1]);
 elseif j ==3;
 set(figh(i,j),'xdata',frequs(2:numplotpoints),'ydata',abs(signal_fft(2:numplotpoints,i)));
 end
 end
 end
%
 Drawnow %force graphing before continuing execution
After the data has been updated, it is now time to see if any of the new data has caused an event to trigger. We take the tolerance inputs that the user inputted during the execution of the code, and use the following logic,
for k = 1:rows_read-1
 if accmag(k)<=acctol && accmag(k+1)>=acctol
 EVENTLIST(n,1) = new_data(k,1);
 EVENTLIST(n,2) = 1;
 n = n+1;
 end
 if data_ma(k,4)<=htol && data_ma(k+1,4)>=htol
 EVENTLIST(n,1) = new_data(k,1);
 EVENTLIST(n,3) = 1;
 n = n+1;
 elseif data_ma(k,4) >=htol && data_ma(k+1,4)<htol
 EVENTLIST(n,1) = new_data(k,1);
 EVENTLIST(n,3) = -1;
 n = n+1;
 end
 if data_ma(k,5)<=ttol && data_ma(k+1,5)>=ttol
 EVENTLIST(n,1) = new_data(k,1);
 EVENTLIST(n,4) = 1;
 n = n+1;
 elseif data_ma(k,5) >=ltol && data_ma(k+1,5)<ltol
 EVENTLIST(n,1) = new_data(k,1);
 EVENTLIST(n,4) = -1;
 n = n+1;
 end
 if data_ma(k,6)<=ptol && data_ma(k+1,6)>=ptol
 EVENTLIST(n,1) = new_data(k,1);
 EVENTLIST(n,5) = 1;
 n = n+1;
 elseif data_ma(k,6) >=ptol && data_ma(k+1,6)<ptol
 EVENTLIST(n,1) = new_data(k,1);
 EVENTLIST(n,5) = -1;
 n = n+1;
 end
 if data_ma(k,7)<=ltol && data_ma(k+1,7)>=ltol
 EVENTLIST(n,1) = new_data(k,1);
 EVENTLIST(n,6) = 1;
 n = n+1;
 elseif data_ma(k,7) >=ltol && data_ma(k+1,7)<ltol
 EVENTLIST(n,1) = new_data(k,1);
 EVENTLIST(n,6) = -1;
 n = n+1;
 end
end
In the case that there was an event, at the end of the codes execution, it will display at what time and which sensor crossed the tolerance to cross in which direction.
.

4. Performance measurements

4.1 Introduction

In order to take our original signal and turn it into something that we could look at get a clear picture, it is necessary to perform various type of filtering. Including a basic moving average as a low pass filter and a band pass filter.

4.2 Measurement – Raw Data and Moving Average
The first signal that we get to see is of the original signal itself. This signal is blue on the far left side of the plots. Directly overlaid of this plot, is one of the moving average. The moving average signal is in red.
4.3 Measurement –Fourier Magnitude Spectrum
The FFT is taken, with 1024 points, of the moving average signal. Here we get to see the Frequency spectrum of the signal and which frequency components contribute the most towards to total signal. This plot is on the far right, and each frequency component is the stem plot, whose height is proportional to its magnitude.
4.4 Measurement – Filter function

We apply this filter to the data, the higher the value on the filter, the more we are going to care about that specific frequency. It weights the signal in the frequency domain, giving more importance to certain frequencies compared to others. This filter function appears in green behind the stem plot.
4.5 Measurement – Re-Constructed Signal

After applying the previous filter function, and Fourier transforming back into the time domain, we get our reconstructed signal. This signal should be cleaner and easier to look at, because it should of its noise reduced.
4.6 Measurement – Event Driven

After the signal is filtered, it becomes easier to analyze for specific events. After the code runs, if the sensor data crosses over a tolerance barrier, then depending on the direction it crosses, up or down, the program will output a datasheet that has a + or – 1 in a column representing that sensor.

For example, after running the code, the following output was received.

 Time Acc Hum Temp Pres Light

 0.8582 0 0 1.0000 0 0

 0.8640 0 0 0 1.0000 0

 0.8640 0 0 0 0 1.0000

 1.5375 0 0 0 0 -1.0000

 2.5153 0 0 0 0 1.0000

 3.1064 0 0 0 0 -1.0000

 13.0489 0 0 0 0 1.0000

 13.4693 0 0 0 0 -1.0000

 13.7777 0 0 0 0 1.0000

 14.1841 0 0 0 0 -1.0000

 14.4298 0 0 0 0 1.0000

 14.8848 0 0 0 0 -1.0000

 14.9055 0 0 0 0 1.0000

 15.4735 0 0 0 0 -1.0000

 16.7266 0 0 0 0 1.0000

 17.3202 0 0 0 0 -1.0000

 17.7390 0 0 0 0 1.0000

 18.0432 0 0 0 0 -1.0000

 18.4059 0 0 0 0 1.0000

 18.7794 0 0 0 0 -1.0000

 19.1520 0 0 0 0 1.0000

 19.5139 0 0 0 0 -1.0000

 19.8693 0 0 0 0 1.0000

 20.2510 0 0 0 0 -1.0000

 20.5783 0 0 0 0 1.000
5. Conclusions

This code is a good start for watching the data in real time, and having different events trigger different outputs. The data can easily be correlated with each other, by checking to see if both certain data had a 1 for instance. This could then be used to control outputs. For example, if the temperature got above a certain limit and the pressure got above a certain limit then open the window and turn on the fan until the temperature gets back below a certain limit.

Some future improvements of this code are to increase the resolution of small frequencies < 1Hz, and to be able to apply different filters to each channel of signal. It would also be nice to incorporate the automatic band pass filter that selects the most powerful frequencies and then builds a top-hat filter around it.

6. Future Uses

Because with this sensor module we have the ability to sensor such a variety of things simultaneously and we are also able to write MATLAB code that will allow us to control input and outputs there are a lot of possibilities for new devices that we would be able to creating using these sensors on an embedded system.

 If on our embedded system we had outputs that were able to control a variety of different appliances or devices it would increase the number of application we could control. One application that would make use of a variety of sensors would be to regulate the climate of an environment. It would be possible for instance to place this sensor inside of a green house and have it sense the pressure, temperature, humidity, ambient and ambient light. Under different situations we would be able to output different things. Let says that we had a vacuum sealed chamber, a controllable exhaust fan, a water vaporizer, a heater, and control over the lights, we would be able to control and regulate the humidity, pressure, light levels, and temperature.

Using various sensors to gain information about the state of the environment gives you better confidence about the data that the sensors are providing. Having logic that relies on an event trigger from multiple sensors is possible. One is able to correlate an opening of a door with an increase in light, decrease in pressure, and increase or decrease in temperature.

With the addition of GPS you would be able to data log your location and your speed and acceleration at all points throughout the day. This is nothing new, but we would also be able to monitor all the other senses at all points throughout the day. This could be advantages for a variety of scenarios or just for people who have OCD and want to track every event in their life.

It is possible to design clothing that has the sensors placed in certain locations so that they are able to pick up on various biological facts, such as breathing rate, pulse rate, oxygen levels of the blood, acceleration of various parts on the body, vibrations on various parts of the body. Certain athletes would be able to use the accelerometers to judge how smooth they can make their running, or how little impact they can have while jumping up and down. They can get more feedback during their workouts so that they improve quicker. Bio-feedback is an important part and largely missing part from self improvement. If athletes had an easily way to visualize their improvement in a step by step very small way, they will be able to make better decisions on how to improve to meet their long term goals.

Video game designers could also be able to make better controllers or senses for their games so that their game could adapt to real time conditions. It would be possible for a game to be raining when the relative humidity outside reaches a certain level. Or for the light in the game to be proportional to the light in the room the user is playing in.

It is possible to make an alarm system so that if your door experiences acceleration then it is being opened.

There are countless ways that it is possible to use new senses in the embedded system world. Each new sense gives you exponentially more abilities then you had after you dial in the logic with other sensors.

7. Distribution list

Report number – Report title (1 copy total)

A.F.J. Levi

1 copy

Professor of Electrical Engineering

University of Southern California

3620 South Vermont Avenue, KAP 132

Los Angeles, California 90089-2533

Tel.
(213) 740-7318

Fax.
(213) 740-9280 fax

Email.
alevi@usc.edu
Web.
http://www.usc.edu/alevi

Figure 3- This is a copy of one of the figures this code produces. The right column has the raw signal(blue) and the moving average(red). The middle column shows the frequency-domain-filtered signal with its DC component missing, and the right column is a stem plot of various frequencies.

Figure 1 - The figure to the left shows the microcontroller data acquisition module. The picture on top shows the module from the top, the bottom picture shows the module from the bottom. The various components are labeled.

Figure 4 - This data output shows that the temperaute and the pressure were above the tolerance, and stayed above the tolerance while the light was switched on and off at the indicated times. The light crossed over the barrier going up, meaning the light turned on, on every time corresponding to a +1. The light switched off or went beneath the tolerance level at the corresponding time for a -1.

PAGE

Page 12 of 14
DISTRIBUTION STATEMENT: Distribution authorized to all.

USB-Microcontroller Data Acquisition Module
Block Diagram

USB Connector

Microcontroller

USB UART IC

USB

Serial

Clock

ADC

ADC

ADC

ADC

ADC

ADC

VCC

GND

USB-Microcontroller Module

Humidity Sensor

Temperature Sensor

Pressure Sensor

Light Sensor

Accelerometer

DAC

DAC

Power from PC’s USB port

Board’s GND and VCC

Nano-electronic FET

D

G

Rd

S

Regulator: 5V to 3.3V

VCC – 5V

V – 3.3V

GND

Ust-crocontoler Data Acquisiion Mode
o0k agram

