Sensitivity and Frequency Analysis for Nano-scaled Light Sensor, Accelerometer
and Temperature Sensor

Sensitivity and Frequency Analysis for Nano-scaled Light Sensor, Accelerometer, and Temperature Sensor
Technical Report 1-b
Submitted by

Michael Fielkow
University of Southern California

3620 South Vermont Avenue, KAP 132

Los Angeles, California 90089-2533

Tel.
(213) 740 7318
Fax
(213) 740 9280
Email
fielkow@usc.edu
Date: April 13, 2009
Work performed at USC

Abstract

Initial analysis was derived from three primary series of experiments: a test of the sensitivity of the dongle’s light sensor through the measurement of light intensity received from passing traffic, a frequency analysis and filter used to identify periodic motion received from the light sensor and the accelerometer placed on a rotating pedestal fan of varying speeds, and a frequency analysis of periodic human breathing using the dongle’s accelerometer. Each of these experimental sets was designed to test the sensitivity of the associated nano-sensor hardware located on the dongle as well as to apply different filtering methods to reduce noise within the received signals. Subsequent experimentation was conducted using real-time data analysis. Additional experimentation in this manner included: real-time traffic analysis using light sensor, real-time light sensor data gathered from the fan moving in sinusoidal motion, and a secondary experiment involving a real-time test of the dongle’s temperature sensor in shifting environments. Through capturing both light sensor data and time-stamped video recordings in the moving-traffic experiments, we were able to show a strong correlation between the peak values on the filtered time domain graph received from the light sensor and the visible events (marked by a passing car) in the video recordings. Further experimentation also revealed the dongle’s additional capacity to sufficiently differentiate between direction of travel for passing vehicles as well as to differentiate between quickly passing and slowly turning vehicles. The second set of experiments proved successful in identifying the fan’s periodic motion using the dongle’s light sensor. Additionally, differentiation could successfully be drawn between the fan’s two modes of operation, “low” and “high”. Data gathered from temperature experimentation revealed the dongle’s sufficient ability to recognize significant ambient temperature changes, and revealed the dongle’s successful capacity to be used to recognize when a freezer door may have been left open. Other real-time data gathered from the dongle, while showing some traffic analysis data consistent with recorded event (a passing car), also showed significant failures; some events were not recorded, while others showed sporadic fluctuations in the graphs. The best data received in light sensor traffic analysis came from the non-real-time data.
Table of Contents

Summary

5

1. Introduction

6

2. Hardware architecture

6
3. Software

7
4. Diagram of System Architecture

7

4. Performance measurements: Light Sensor – Traffic Analysis

8-12

4.1 Introduction

8
4.2 Measurement section one – traffic

8-9
4.3 Measurement section two – slow moving car pulling into driveway

10
4.4 Measurement section three – Real-Time detection of traffic

11-12
5. Performance measurements: Light Sensor and Accelerometer – Rotating Fan

13-21

5.1 Introduction

13
5.2 Measurement section one – fan off – acceleration

13-14
5.3 Measurement section two – fan on “low” and stationary – acceleration

15
5.4 Measurement section two – fan on “low” and stationary – light

16
5.5 Measurement section three – fan on “low” and rotating – acceleration

17
5.6 Measurement section three – fan on “low” and rotating – light

18
5.7 Measurement section four – fan on “high” and stationary – light

19
5.8 Measurement section five – fan on “high” and rotating – light

20

5.9 Measurement section six – fan on “low” and rotating – light – Real-Time Data

21
6. Performance measurements: Light Sensor and Accelerometer – Human Breathing and Controlled Periodic Light Source

22-24

6.1 Introduction

22
6.2 Measurement section one – primary dongle

22-23
6.3 Measurement section two – secondary dongle

23-24
7. Performance measurements: Temperature Sensor – Real-Time Data

26-29
7.1 Introduction

26
7.2 Measurement section one – room temperature vs. household freezer – decreasing
26-27 temperature

7.3 Measurement section two – refrigerator vs. room temperature – increasing

28

temperature

7.4 Measurement section three – open freezer

29
8. Example of experimental error

30
9. Conclusions

31-32
10. Appendices

33-42
10.1 Appendix A: Data_Collect Matlab Code

33-36
10.2 Appendix B: Data_Filter Matlab Code

37-38
10.3 Appendix C: Examples of changes to Matlab code and Data Filtering

39-42
11. Distribution list

43
Summary

Experimentation included several major components, each utilizing the dongle’s light sensor (the dongle was composed of several pieces of detection hardware including a light sensor, humidity sensor, pressure sensor, temperature sensor, and accelerometer), or temperature sensor, in combination with or without the attached accelerometer. The purpose of experimentation was to examine the sensitivity of the dongle’s hardware as well as to apply data filters and analyze frequency graphs for the removal of ambient noise.

The first component of experimentation involved the side-by-side collection of both light sensor data and video data examining the ability of the dongle’s light sensor to pick up changes in light resulting from the passage of moving cars. The dongle was placed at ground level and measurements were taken during two 2-minute intervals; at the same time, video of the street was recorded during these intervals. The video allowed for the parallel examination of the light sensor’s data with recorded time-stamped images. This examination of car movements using the light sensor proved relatively effective. Following the application of the Matlab data filter program provided by Prof. Levi, I was successfully able to identify several events marked by the passing of a car that showed agreement between the light sensor data and the time-stamped video data. In addition, because the light sensor was positioned on a slight angle towards the nearest oncoming traffic, differences could be seen that marked the direction of travel of the vehicle. Only one major discrepancy occurred (at the interval between 9-15 sec.) in which the largest peak (in both width and height) is seen and the passage of one car is overshadowed. I have concluded through examining the corresponding video that this discrepancy most likely occurred due to an error in data analysis that resulted from the passage of three closely following cars, the second of which had on its high-intensity headlights (“brights”). This experiment was continued upon through the use of real-time data gathering. Several events were evidenced by peaks on the filtered light sensor graph, however, other events were ignored or gave sporadic results. The real-time data was not sufficient to show speed or direction of travel, and only inconsistently recognized passing traffic.
The second component of experimentation involved the an analysis of the light sensor and accelerometer by attaching the dongle to a rotating fan. Data was measured for five different fan settings, each in 30 sec. intervals: fan off, fan on “low” setting without rotation, fan on “low” setting with rotation, fan on “high” setting without rotation, and fan on “high” setting with rotation. The ability to measure the fan’s vibrations without rotation was expected to allow for an easier elimination of noise in my results. In this component of experimentation, however, data collected using the accelerometer proved unusable (revealing a possible malfunction in the accelerometer hardware) while light sensor data showed a well-defined periodic motion in the fan’s rotations. Accelerometer data showed large discrepancy with expected results (i.e. in the ‘fan off’ mode, accelerometer data still revealed significant acceleration in each axis), leading me to conclude that a malfunction occurred in the accelerometer hardware.
The next component of experimentation involved a frequency analysis of the accelerometer while measuring stationary human breathing and a frequency analysis of the light sensor while examining a controlled periodic light source. The frequency analysis of human breathing when using data received from a different accelerometer showed easily identifiable frequency, however, errors once again appeared in data received using the accelerometer on my primary dongle. Frequency analysis of data received from the light sensor’s reading of a controlled periodic light source proved successful in removing ambient noise and drawing out peak frequencies.
The final section of experimentation involved testing the precision and applicability of the dongle’s temperature sensor through real-time data analysis. Data was gathered in three scenarios: room temperature to freezer, refrigerator to room temperature, dongle placed directly outside of freezer. The dongle showed sufficient ability to recognize temperature changes and showed a capacity to recognize an event marked by a freezer door having been left open.
All of the secondary real-time data analysis required significant reorganization and addition to the real-time Matlab code provided by Mr. Seliger. Changes to the Matlab code primarily allowed for filtering of non-accelerometer data and creating video recordings of real-time graphs.

1. Introduction

In the several components of experimentation: the detection of passing traffic using the light sensor, an analysis of periodic fan rotation and noise removal using the light sensor and accelerometer, a frequency analysis and filtering of the human heartbeat detected with the accelerometer and a controlled periodic light source using the light sensor, and an analysis of temperature in shifting environments, I intended to examine the sensitivity of two of the sensors incorporated into the class-provided nano-sensor dongle as well as to perform filtering and frequency analysis on the results. In using several low-pass filters (moving averages), Fourier filters (hamming window, etc) and applying a filtering Matlab code (the base of which was provided by Prof. Levi) to discern identifiable signals I intended to filter out ambient noise in the collected data. A determination of the sensitivity of the dongle’s included sensors would allow for a better understanding of the limits of the dongle’s use in industry (i.e. “can the dongle’s light sensor be used successfully in such products as traffic cams/signals”, etc.)
2. Hardware architecture

Figure 1(a) shows the primary dongle used in experimentation. Includes a light sensor, temperature sensor, humidity sensor, pressure sensor, and accelerometer. Light sensor and accelerometer used in experimentation. Figure 1(b) is a photograph of the Nikon Coolpix S550 digital camera with video capability: 10 megapixels. Figure 1(c) is a photograph of the Holmes HASF99 Stand (Pedestal) Fan. Dimensions are 12 in. x 12 in. x 40 in. (height, width, and depth) with a 10 in. blade length, 120V, 60Hz. Figure (d) is a photograph of a standard Kelvinator refrigerator/freezer; representative of that utilized in experimentation.
[image: image1.jpg]

[image: image2.png]

(a) (b)

[image: image3.png]

 [image: image4.png]

 (c) (d)
Figure 1: (a) Photograph of primary dongle used in experimentation. Includes light sensor and accelerometer. (b) of the Nikon Coolpix S550 digital camera with video capability: 10 megapixels. (c) Photograph of the Holmes HASF99 Stand (Pedestal) Fan. Dimensions are 12 in. x 12 in. x 40 in. (height, width, and depth) with a 10 in. blade length, 120V, 60Hz.(d) Photograph of standard Kelvinator refrigerator/freezer. Representative of that utilized in experimentation.
3. Software

Software included three Matlab programs provided by Prof. Levi. Data_Collect was used in the collection of both accelerometer and light sensor data. Data_Plot and Data_Filter were both used in the graphing, analysis, and filter of the collected data. Some small alterations were made to the original programs, most notably, an added capability to filter light sensor data was incorporated into the Data_Filter program. Copies of the software code used in experimentation are included in the appendix of this technical report. CamShot was used to record movies of real-time figure data, while Windows Movie Maker was used for video editing of these movies.
4. Diagram of System Architecture

[image: image5]
4. Performance measurements: Light Sensor – Traffic Analysis
4.1 Introduction

The following section includes graphs depicting data collected from the light sensor examining changing light intensities due to the automobile headlights of passing traffic. The section also includes time-stamped snapshots of video that corresponds with the light sensors data. Original results are followed by filtered graphs in which we attempted to reduce noise due to ambient light sources. Subsequent experimentation involved real-time data analysis which showed less success in recognizing traffic using the light sensor.
4.2 Measurement section one – traffic
The first set of measurements was taken across a 2-minute interval. Figure (4.1) depicts the unfiltered time domain graph. Figure (4.5) depicts the final filtered time domain signal of the light sensor data detecting traffic. The following video snapshots (labeled A-F) correspond to relevant marked points on this filtered time domain graph that shows a positive correlation between the light sensor data and visible video data.
[image: image6.emf]0 20 40 60 80 100 120

0

0.5

1

1.5

2

2.5

Signal

Figure 4.1: Time domain graph of light sensor data detecting traffic
[image: image7.emf]0 20 40 60 80 100 120 140 160

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Imaginary part of FFT of signal

 [image: image8.emf]0 100 200 300 400 500 600 700

10

-20

10

-15

10

-10

10

-5

10

0

Power spectrum of signal

[image: image9.emf]0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency domain filter

Figure 4.2: Frequency domain graph of light sensor data detecting traffic

Figure 4.3: Power spectrum graph of light sensor data detecting traffic

Figure 4.4 Frequency domain filter graph applied to light sensor data detecting traffic

[image: image10.emf]0 20 40 60 80 100 120

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

X: 13.99

Y: 2.282

Filtered signal

X: 20.42

Y: 1.983

X: 6.532

Y: 0.8435

X: 25.79

Y: 0.6611

X: 30.76

Y: 1.048

X: 35.07

Y: 1.269

X: 39.53

Y: 0.6535

X: 43.24

Y: 0.6307

Figure 4.5: Filtered time domain graph of light sensor data detecting traffic
[image: image11.png]

 [image: image12.png]

 [image: image13.png]

 (A) (B) (C)

[image: image14.png]

 [image: image15.png]R S

 [image: image16.png]

 (D) (E) (F)

4.3 Measurement section two – slow moving car pulling into driveway
Additional measurements were taken that analyzed the light sensors response to a car slowing down and pulling in to a nearby driveway. As expected, the filtered signal is wider and taller than a single quickly passing car. Figure 4.6 shows the filtered time domain graph. The following video snapshots show the cars slow movement into the driveway.
[image: image17.emf]0 2 4 6 8 10 12 14 16 18

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

X: 10.97

Y: 0.8949

Filtered signal

X: 11.88

Y: 0.9216

X: 13.51

Y: 0.7895

X: 10.22

Y: 0.7003

X: 8.181

Y: 0.5206

X: 15.83

Y: 0.5569

Figure 4.6: Filtered time domain graph of light sensor detecting car pulling into driveway

[image: image18.jpg]

 [image: image19.jpg]i

ﬂ] v

 [image: image20.jpg]

[image: image21.jpg]X o

w oy BN
Cmm

 [image: image22.jpg].
=
b

4.4 Measurement section three – Real-Time detection of traffic

Real-Time measurements were taken using an updated Matlab code that took in, displayed, and filtered acceleration data in real-time. Primary filters used in data manipulation included a moving average (20 points) and a hamming window that best modeled the data. Filtered signal was further multiplied by a factor of 30 in an effort to visually amplifying signal peaks. The following figures show several examples of light sensor response to passing vehicles; however, while some traffic (events) was identified through real-time experimentation, data was, in general, of a far lesser quality than that received from non real-time data. Only a few events were noticed, while others went without detection.
[image: image23.png]Ly Figure 1 s |21 (2}] A

3 (3 [Fie Edt View Tnsere Tools Desktop Window Help N
ol DEHS (R [RRUBDEL- Q0B |
Curentl{ 5« x
Time evolution of iluminescence data Frequency spectrum of ilum signal
0« o7 : b
0 Nam
06
®
Bag 05 g
£ A E1
|| Bluef E 04 S
) data £ 5
) data =03 B
8 dota o v s
[data =
) dats 01
£ data,
) data 0) o
datl 32 34 36 38 4 42 44 46 48 o 10 20 30 40 50 60
£ data,
] data v
] Unfiltered illuminance data Frequency domain filtered illuminescence data
) Datal 10 0 2 x
) data 9
06
£ Datal 8
) expe - 05
Y 6
E 04 £
E 03 T
=02
2
01 ﬁ
o o (\
32 34 36 38 4 42 44 46 48 3 2 -1 o 1 4
Time (s)

B« » o q_|

Figure 4.7: Graphs (both filtered and unfiltered) identifying light sensor response to passing traffic (event).

[image: image24.png]e [T s —————————————————————
ile_Edg
3 (3 [Fie Edt View Tnsere Tools Desktop Window Help
e DEHS [k [AAVDRL-(E|0E aD
Curentl{
T Time evolution of iluminescence data Frequency spectrum of ilum signal
« 07
u
0 Nam
06
®
Bag 05 g
£ A E1
|| Bluef E 04 S
) data £ 5
) data =03 B
S 0 £
[data =
) dats 01
£ data,
) data 0) o
datl 92 84 96 98 10 102 104 106 108 o 10 20 30 40 50 60
) e
] data
] Unfiltered illuminance data Frequency domain filtered illuminescence data
10
£) Data
) data
06
£ Datal 8
) expe - 05
Y 6
E 04 £
E 03 T
=02
2
01
, , i I
92 84 96 98 10 102 104 106 108 4 3 6 7 8 9 10
Time (s)
I

Y n

T New Folder () Camstudio Widterm Technical

Windows Movie Ma.

Figure 4.8: Graphs (both filtered and unfiltered) identifying light sensor response to passing traffic (event). Clear peaks.

[image: image25.png]Ly Figure 1 s |21 (2}] A

)] |l Edi View et Tocls Deshtop Window Help ~
ol DEHS (R [RRUBDEL- Q0B |
Current 5+ x
B «d Time evolution of illuminescence data Frequency spectrum of illum signal
« o7 b
u
0 Nam
0.6
®
Bag 05| g
£ A E1
|| Bluef E 04] S
8 an = g
) data =03 B
A o s £
[data =
) dats 01
£ data,
£ dats 0) o
datl 308 3 312 314 316 318 32 322 324 o 10 20 30 40 50 60
£ data,
(] data v
] Unfiltered illuminance data Frequency domain filtered illuminescence data
) Datal 10, 0 2 x
) datal 9
0.6
£ Datal 8
) expe . 05]
3 6
E 04] £
E 03] T
= 02—/‘/%
2]
01
d d 5 A
308 3 312 314 316 318 32 322 324 25 26 27 28 29 30 3 32
Time (s)
s

SiaL R Pl

Figure 4.8: Graphs (both filtered and unfiltered) identifying light sensor response to passing traffic (event). Example of relatively insignificant detection with real-time data.

[image: image26.png]File Edit View Insert Tools Desktop Window Help >

DEHe KM AAUDEL- S 0E | nD

Time evolution of iluminescence data Frequency spectrum of llum signal

07

06

(13

m spectrum mag

02

01

85

124 126 128 13 132 134 136 138 14 0 20 30 40 50

Unfitered iluminance data Frequency domain fitered illuminescence data
10

06
(13

04 @

luminance (1<)
illum

02

01

0
124 126 128 13 132 134 136 136 14 6 7 8 s 10 1 12 13 1
Time (s)

3 «nom

New Folder (2)

Figure 4.8: Graphs (both filtered and unfiltered) identifying light sensor response to passing traffic (event). Long peak for bright, slow-moving vehicle.

5. Performance measurements: Light Sensor and Accelerometer – Rotating Fan
5.1 Introduction

The following section includes graphs depicting data collected from the light sensor and accelerometer during five stages: fan off, fan on “low” and stationary, fan on “low” and rotating, fan on “high” and stationary, fan on “high” and rotating. Each stage is shown with original time domain graphs for both light and acceleration along the x-axis. Original results are followed by filtered graphs in which we attempted to reduce noise due to ambient light sources. A subsequent experiment involves repeating the experiment to gather light sensor data using real-time data analysis.
[image: image27.png]

Figure 5.1: Depiction of experimental setup
5.2 Measurement section one – fan off – acceleration
The first set of measurements was taken while the fan was turned off and the light sensor was facing towards the light source.
[image: image28.emf]0 5 10 15 20 25 30

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Signal

[image: image29.emf]0 100 200 300 400 500 600 700

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Imaginary part of FFT of signal

Figure 5.1: Unfiltered time domain graph of acceleration along the x-axis for ‘fan off’.

Figure 5.2: Frequency domain graph of acceleration along the x-axis for ‘fan off’.
[image: image30.emf]0 5 10 15 20 25 30

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Filtered signal

Figure 5.3: Filtered time domain graph of acceleration along the x-axis for ‘fan off’. Shows malfunction with accelerometer.

5.3 Measurement section two – fan on “low” and stationary – acceleration
[image: image31.emf]0 5 10 15 20 25 30

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Signal

[image: image32.emf]0 100 200 300 400 500 600 700

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Imaginary part of FFT of signal

[image: image33.emf]0 100 200 300 400 500 600 700

10

-12

10

-10

10

-8

10

-6

10

-4

10

-2

10

0

Power spectrum of signal

[image: image34.emf]0 5 10 15 20 25 30 35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency domain filter

Figure 5.4: Unfiltered time domain graph for acceleration along the x-axis for ‘fan on “low” and stationary’.

Figure 5.5: Frequency domain graph for acceleration along the x-axis for ‘fan on “low” and stationary’.

Figure 5.6: Power spectrum graph for graph for acceleration along the x-axis for ‘fan on “low” and stationary’.

Figure 5.7: Frequency domain filter graph for graph for acceleration along the x-axis for ‘fan on “low” and stationary’.
[image: image35.emf]0 5 10 15 20 25 30

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Filtered signal

Figure 5.8: Filtered time domain graph for acceleration along the x-axis for ‘fan on “low” and stationary’.
5.4 Measurement section two – fan on “low” and stationary – light
[image: image36.emf]0 5 10 15 20 25 30

1.95

2

Signal

[image: image37.emf]0 100 200 300 400 500 600 700

-2

-1

0

1

2

3

4

5

6

x 10

-3

Imaginary part of FFT of signal

[image: image38.emf]0 100 200 300 400 500 600 700

10

-20

10

-15

10

-10

10

-5

10

0

10

5

Power spectrum of signal

[image: image39.emf]0 20 40 60 80 100 120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency domain filter

Figure 5.9: Unfiltered time domain graph for light sensor data for ‘fan on “low” and stationary’.

Figure 5.10: Frequency domain graph for light sensor data for ‘fan on “low” and stationary’.

Figure 5.11: Power spectrum graph for light sensor data for ‘fan on “low” and stationary’.

Figure 5.12: Frequency domain filter graph light sensor data for ‘fan on “low” and stationary’.
[image: image40.emf]0 5 10 15 20 25 30

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Filtered signal

Figure 5.13: Filtered time domain graph for light sensor data for ‘fan on “low” and stationary’.
5.5 Measurement section three – fan on “low” and rotating – acceleration
[image: image41.emf]0 5 10 15 20 25 30

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Signal

[image: image42.emf]0 100 200 300 400 500 600 700

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Imaginary part of FFT of signal

[image: image43.emf]0 100 200 300 400 500 600 700

10

-12

10

-10

10

-8

10

-6

10

-4

10

-2

10

0

Power spectrum of signal

[image: image44.emf]0 5 10 15 20 25 30 35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency domain filter

Figure 5.14: Unfiltered time domain graph for acceleration along the x-axis for ‘fan on “low” and rotating’.
Figure 5.15: Frequency domain graph for acceleration along the x-axis for ‘fan on “low” and rotating’.

Figure 5.16: Power spectrum graph for graph for acceleration along the x-axis for ‘fan on “low” and rotating’.

Figure 5.17: Frequency domain filter graph for graph for acceleration along the x-axis for ‘fan on “low” and rotating’.
[image: image45.emf]0 5 10 15 20 25 30

-1.5

-1

-0.5

0

0.5

1

1.5

Filtered signal

Figure 5.18: Filtered time domain graph for acceleration along the x-axis for ‘fan on “low” and rotating’.
5.6 Measurement section three – fan on “low” and rotating – light

[image: image46.emf]0 5 10 15 20 25 30

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Signal

[image: image47.emf]0 100 200 300 400 500 600 700

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Imaginary part of FFT of signal

[image: image48.emf]0 100 200 300 400 500 600 700

10

-15

10

-10

10

-5

10

0

10

5

Power spectrum of signal

[image: image49.emf]0 20 40 60 80 100 120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency domain filter

Figure 5.19: Unfiltered time domain graph for light sensor data for ‘fan on “low” and rotating’.

Figure 5.20: Frequency domain graph for light sensor data for ‘fan on “low” and rotating’.

Figure 5.21: Power spectrum graph for light sensor data for ‘fan on “low” and rotating’.

Figure 5.22: Frequency domain filter graph light sensor data for ‘fan on “low” and rotating’.
[image: image50.emf]0 5 10 15 20 25 30

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Filtered signal

Figure 5.23: Filtered time domain graph for light sensor data for ‘fan on “low” and rotating’.
5.7 Measurement section four – fan on “high” and stationary – light

[image: image51.emf]0 5 10 15 20 25 30

2.04

2.05

2.06

2.07

2.08

2.09

2.1

2.11

2.12

Signal

[image: image52.emf]0 100 200 300 400 500 600 700

-2

0

2

4

6

8

10

12

x 10

-3

Imaginary part of FFT of signal

[image: image53.emf]0 100 200 300 400 500 600 700

10

-20

10

-15

10

-10

10

-5

10

0

10

5

Power spectrum of signal

[image: image54.emf]0 0.5 1 1.5 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency domain filter

Figure 5.24: Unfiltered time domain graph for light sensor data for ‘fan on “high” and stationary’.

Figure 5.25: Frequency domain graph for light sensor data for ‘fan on “high” and stationary’.

Figure 5.26: Power spectrum graph for light sensor data for ‘fan on “high” and stationary’.

Figure 5.27: Frequency domain filter graph light sensor data for ‘fan on “high” and stationary’.
[image: image55.emf]0 5 10 15 20 25 30

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Filtered signal

Figure 5.28: Filtered time domain graph for light sensor data for ‘fan on “high” and stationary’.
5.8 Measurement section five – fan on “high” and rotating – light

[image: image56.emf]0 5 10 15 20 25 30

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Signal

[image: image57.emf]0 100 200 300 400 500 600 700

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Imaginary part of FFT of signal

[image: image58.emf]0 100 200 300 400 500 600 700

10

-15

10

-10

10

-5

10

0

10

5

Power spectrum of signal

[image: image59.emf]0 0.5 1 1.5 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency domain filter

Figure 5.29: Unfiltered time domain graph for light sensor data for ‘fan on “high” and rotating’.

Figure 5.30: Frequency domain graph for light sensor data for ‘fan on “high” and rotating’.

Figure 5.31: Power spectrum graph for light sensor data for ‘fan on “high” and rotating’.

Figure 5.32: Frequency domain filter graph light sensor data for ‘fan on “high” and rotating’.
[image: image60.emf]0 5 10 15 20 25 30

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Filtered signal

Figure 5.33: Filtered time domain graph for light sensor data for ‘fan on “high” and rotating’.

5.9 Measurement section six – fan on “low” and rotating – light – Real-Time Data

Experimentation with real-time data also showed a sinusoidal motion with the light sensor, however motion was seen on a much slighter and wider scale.
[image: image61.png]File Edit View Insert Tools Desktop Window Help

DEHe KM AAUDEL- S 0E | nD

Time evolution of iluminescence data
07

06

(13

02

01

658 66 662 664 666 668 67

Unfitered iluminance data

672

674

06

(13

04

03

luminance (1<)

02

01

658 66 662 664 666 668 67
Time (s)

ol

»(um o «nom

672

674

Frequency spectrum of llum signal

m spectrum mag

0 20 30 40

Frequency domain filered illuminescence data
10

85

illum

67

Figure 5.34: Light sensor data using real-time analysis also revealed slight sinusoidal motion.
6. Performance measurements: Accelerometer – Human Breathing
6.1 Introduction

Accelerometer data measuring human breathing was drawn from two sources: the primary dongle and an additional dongle borrowed from a colleague. The data on human breathing resulting from the second, and better operational, dongle reveals clear and identifiable frequency. Filters were applied to reduce noise originating from unintentional movement, heartbeat, etc.

6.2 Measurement section one – primary dongle

The first set of measurements was taken from the primary dongle.

[image: image62.emf]20 25 30 35 40 45

2

2.5

3

3.5

4

Signal

Figure 6.1: Unfiltered time domain graph of acceleration along the z-axis for human breathing with the primary dongle.

[image: image63.emf]0 100 200 300 400 500 600 700

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Imaginary part of FFT of signal

 [image: image64.emf]0 100 200 300 400 500 600 700

10

-14

10

-12

10

-10

10

-8

10

-6

10

-4

10

-2

10

0

10

2

Power spectrum of signal

 [image: image65.emf]0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency domain filter

Figure 6.2: Frequency domain graph of acceleration along the z-axis for human breathing with the primary dongle.

Figure 6.3: Power spectrum graph of acceleration along the z-axis for human breathing with the primary dongle.

Figure 6.4: Frequency domain filter graph of acceleration along the z-axis for human breathing with the primary dongle.
[image: image66.emf]0 10 20 30 40 50 60

6.35

6.4

6.45

6.5

6.55

6.6

6.65

6.7

6.75

Filtered signal

Figure 6.5: Filtered time domain graph of acceleration along the z-axis for human breathing with the primary dongle. Shows malfunction with accelerometer.

6.3 Measurement section one – secondary dongle

The second set of measurements was taken from an additional (operational) dongle.

[image: image67.emf]0 5 10 15 20 25 30 35 40 45

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Signal

Figure 6.6: Unfiltered time domain graph of acceleration along the z-axis for human breathing with the secondary dongle.

[image: image68.emf]0 100 200 300 400 500 600 700 800

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Imaginary part of FFT of signal

 [image: image69.emf]0 100 200 300 400 500 600 700 800

10

-15

10

-10

10

-5

10

0

10

5

Power spectrum of signal

 [image: image70.emf]0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency domain filter

Figure 6.7: Frequency domain graph of acceleration along the z-axis for human breathing with the secondary dongle.

Figure 6.8: Power spectrum graph of acceleration along the z-axis for human breathing with the secondary dongle.

Figure 6.9: Frequency domain filter graph of acceleration along the z-axis for human breathing with the secondary dongle.

[image: image71]
Figure 6.10: Filtered time domain graph of acceleration along the z-axis for human breathing with the secondary dongle.

7. Performance measurements: Temperature Sensor – Real-Time Data
7.1 Introduction

The dongle’s temperature sensor was tested with real-time data collection in events marked by significant changes in ambient temperature. This was achieved through one of several ways: standard room temperature, placed within a common household freezer, attached in close proximity to a common household freezer, and allowed to cool to a steady cold temperature in a common refrigerator. Moving average filters were applied to reduce noise; further Fourier windowing filters were applied (see Matlab code), which identified significant changes in ambient temperature through increased amplitude of fluctuation. In the cases of both steady room temperature and level cold or hot temperatures Fourier filtered data showed little fluctuation in amplitude. Experimentation revealed a successful ability in the dongle to accurately measure ambient temperature changes. Real-time data allowed for the experimenter to follow as the temperature sensor approached ambient temperature in real-time.
7.2 Measurement section one – room temperature vs. household freezer – decreasing temperature

The first set of measurements was taken, showing a juxtaposition in both temperature data and signal data when the dongle was moved from room temperature to the inside of a common household freezer.

[image: image72.png]File Edit View Insert Tools Desktop Window Help

Dade |

RAGDE A

Temp (Celsius)

Temperature

2%

15

10

2%

15

10

Time evolution of temperature data

S 08ed

78 82 84 86 88 92 94
Unfittered temperature data
78 82 84 86 88 92 94

Time (s)

m spectrum mag

Temp (Celcius)

Frequency spectrum of llum signal

0

Frequency domain filtered temperature data

85

Figure 7.1: Dongle in room temperature environment. Little fluctuation seen in filtered frequency domain graph.

. [image: image73.png]File Edit View Insert Tools Desktop Window Help

Dade |

RALGDERA- D

[Ny

Time evolution of temperature data

2%

15

Temp (Celsius)

10

20 202 204

206 208 21 212 214 216

Unfittered temperature data

2%

15

Temperature

10

20 202 204

206 208 21 212 214 216
Time (s)

m spectrum mag

Temp (Celcius)

Frequency spectrum of llum signal

0

Frequency domain filtered temperature data

85

New Folder (2)

Figure 7.2: Dongle placed in freezer. Temperature is shown to decrease, while immediate fluctuation is evidenced in the filtered frequency domain graph.

[image: image74.png]Fige

File Edit View Insert Tools Desktop Window Help

Dad

3

Temp (Celsius)

Temperature

WA OB R A

S 08ed

Time evolution of temperature data

2%

15

10

96 98

10 102 104 106 108 11

Unfittered temperature data

12

2%

15

10

96 98

0 102 104 106 108 1
Time (s)

12

T New Folder ()

Camstudio

m spectrum mag

Temp (Celcius)

Frequency spectrum of llum signal

o
0 20 30 0 50 60
Frequency domain filtered temperature data
5 5 7 8 s 10 1

Figure 7.3: Dongle in freezer for extended period of time. Temperature continues to decrease at a steady rate. Period motion can be seen in the filtered frequency graph, likely representative of a constant rate of temperature change in the dongle.

7.3 Measurement section two – refrigerator vs. room temperature – increasing temperature

Second set of measurements began with the dongle at a constant cold temperature and then placed in room temperature. Little fluctuation was seen in the filtered frequency graph once the dongle had reached constant cold temperature, while large fluctuation was seen when environment was shifted to room temperature.

[image: image75.png]File Edit View Insert Tools Desktop Window Help

Dade |

RANUPEL- S| 0E|nD

Temp (Celsius)

Temperature

25|

15|

10|

o

25|

15

10|

Time evolution of temperature data

52 154 156 168 16 162 164 166 168

Unfitered temperature data.

q
152 164 166 158 16 162 164 166 168

Camstudio

m spectrum mag

Temp (Celcius)

Frequency spectrum of llum signal

0

Frequency domain filtered temperature data

bttt bl e

M 12 13 14 15 16

Figure 7.4 Placed in a cold environment (refridgerator) for an extended period of time so as able to reach ambient temperature, the dongle reached a steady temperature state.

[image: image76.png]File Edit View Insert Tools Desktop Window Help

DS R AATDRA- (S

Time evolution of temperature data

Frequency spectrum of llum signal

2%

15

Temp (Celsius)

10

1

£
£
£

334 36 338

Unfittered temperature data

2%

Frequency domain filtered temperature data

15

Temperature

10

Temp (Celcius)

334 336 338

3 «nom

T New Folder ()

27 28 29 30 31 32 33 M4 3

85

Figure 7.5 Shifted to a room temperature environment, the dongle showed a rapid increase in temperature; the filtered frequency graph showed large fluctuation.

7.4 Measurement section three – open freezer

The third set of measurements was taken when the dongle was placed directly outside of the freezer; the freezer door was subsequently opened and the dongle was examined using real-time data. Goal of experimentation was to prove the effectiveness of the dongle in recognizing an event in which the freezer door was accidentally left open. Data revealed that after approx. 50 sec. (long enough to assume that the freezer may have been left open) the dongle reached a steady state. In this manner, the dongle could be used to recognize events in which the freezer door was left open.

[image: image77.png]Fige

File Edit View Insert Tools Desktop Window Help

RANUPEL- S| 0E|nD

Dade |

3 «

Temp (Celsius)

Temperature

2%

2%

21

2%

Time evolution of temperature data

e

1M 112 114 116 118 12 122 124 126

Unfittered temperature data

M 112 114 116 118 12 122 124 126

F

New Folder (2) Camstudio

m spectrum mag

Temp (Celcius)

Frequency spectrum of llum signal

85

0 20 30 0 50
Frequency domain filtered temperature data
6 7 8 s 10 N1 12

Figure 7.6: Dongle placed on outside of freezer showed immediate temperature change when freezer door was opened. Filtered frequency graph showed large fluctuation.

[image: image78.png]Fige
File Edit View Insert Tools Desktop Window Help

DEHe KM AAUDEL- S 0E | nD

Time evolution of temperature data Frequency spectrum of llum signal

Temp (Celsius)
m spectrum mag

2%

85

564 566 568 & 672 574 6716 578 58 0 20 30 40 50

Unfittered temperature data Frequency domain filtered temperature data

2%

et i sl oy

21

Temperature
Temp (Celcius)
o

2% 5
564 666 668 57 572 674 576 578 68 50 &1 62 63 &4 6 & 6 68

Time (s)

ST q |

Figure 7.7: After approximately 50 sec, the dongle reached a steady state. Filtered frequency spectrum showed minimal fluctuation starting at this point. It is therefore shown that the dongle can be used to identify events in which the freezer door was left open.

8. Example of experimental error

Errors using Matlab in real-time occurred quite often during experimentation. Display issues (such as that shown below) occurred frequently, possibly as a result of insufficient computer/dongle processing speed. These errors made experimentation difficult, and at times unreliable. These factors need to be accounted for in data analysis.
[image: image79.png]AT pr_X
e [L e ——]
)] |l Edi View et Tocls Deshtop Window Help ~
& IPEF IS PRI
Current 5+ x
rPT Time evolution of luminescence data Frequency spectrum oflum signal
« o e
O Nl s i !
#) data,
[data 05 g
e £
A an £ 04 5
) data = g
[datd 03 g
fape 0 £
] data =
3 01
£) Data
0 0 o
M 12 13 4 15 16 17 0 10 2 0 0 50 &
v
Unfitered illuminance data Frequency domain fitered iliminescence data
10 5+ x
[
8
05 [
3 By
g o .
£03 =
=02
2
01
0 oS
M 12 13 4 15 16 17 2 4 6 8 1 12 14 16
Time (s)
s
(S e Pl

9. Conclusions

Through experimentation, we were able to sufficiently gauge the sensitivity of each the light sensor, the accelerometer, and the temperature sensor included with the dongle. In addition, through applying low pass filters in the form of moving averages and applying the filtering Matlab code provided by Professor Levi and Mr. Seliger, we were able to reduce noise within our results, identifying clearer and more identifiable signals.
In the first section of experimentation: a test for the sensitivity of the light sensor through an examination of its capabilities to identify specific events (marked by the passage of a car in nighttime traffic), we saw a clear correlation along the time axis between the peak values found on the filtered time domain graph for the light sensor and the visually identified events found on video recordings. A standard deviation of 1.46 sec. was found between the filtered time domain graph and these visually identified video markers. This relatively small error shows a strong association between the two outputs, thereby revealing that the dongle’s light sensor does have the sufficient sensitivity to measure such events as the passing of car headlights roughly 4-10 meters away and moving at an approximated 1-35 mph (.447-15.646 m/s). In addition, a strong association was seen between the relative height of the peaks that occurred on the filtered time graph and the side of the street that a car passed on, or similarly, the direction that the car was moving. Because the light sensor was situated in a slight angle towards oncoming traffic on the side of the road in which the sensor was placed, larger peaks show a clear identification with traffic on this nearer side of the road (oncoming), while smaller peaks can be identified we traffic on the farther side (moving away). One point of discontinuity was found, however, that seemed outside of the range of experimental error in this case: at approximately 11 seconds, the video recordings showed a car moving towards the angle of the light sensor (and therefore expected to create a large peak) that did not appear as a marked event in the filtered time graph. This point occurs along the upward slope of the curve that can be associated with the peak value at 13.99 seconds (the largest peak in the data set). We have hypothesized through examining the video recordings that this discrepancy most likely occurred as a result of the events occurring in the time directly following the graphically-unmarked passage of a car at 11 sec.: two other vehicles (with high-intensity lights) at 14 sec. and 19 sec. can be seen to directly follow behind the unmarked car, likely overshadowing the headlights of the unmarked car and creating the appearance of one single vehicle’s high-intensity head beams (gradually increasing as the car grew nearer to the light sensor) rather than two closely following vehicles.
In the next set of results using the light sensor to detect traffic, a single automobile slowly pulling into a driveway was examined. The filtered time graph for this event showed a significant visual differentiation from the peaks observed in the filtered time graph for general traffic that was seen in the previous set of data. The shape of the peak, while maintaining a clear relative maxima, showed a less uniform (smooth) curve than was found with general passing traffic. In addition, the peak showed a longer (wider) curve that would be identifiable with the slower moving car’s prolonged presence within the light sensor’s range of operation. We can once again see strong correlation along the time axis between the filtered time graph for this event and the associated video recordings.
This experimentation was subsequently repeated using a real-time data analysis, however, experimentation in this manner provided far less consistent results. In several instances (as depicted by the graphs above) the light sensor was able to recognize traffic using the real-time Matlab code. In other instances however, cars were not shown within the real-time graphs or peaks of varied heights and widths were seen that appeared to show little continuity with passing traffic. Some improvement was made through narrowing the windowing filter function and amplifying the resulting filtered data so as to strongly show peak events.

In the second series of experimentation, we were shown a clear sinusoidal motion in the rotations of the pedestal fan through data received from the light sensor, while data received from the accelerometer ranged significantly outside of expected values. Regarding the data received from the light sensor, as expected a nearly constant value was received when the fan was stationary, while a frequencies of .1 Hz and .22 Hz were found for ‘fan on “low” and rotating’ and ‘fan on “high” and rotating’ relatively. The filtered graphs show a very easily identifiable periodic motion for these values. Accelerometer data, however, proved unreliable for this experiment. The data received from the accelerometer on the primary dongle in both this experiment and the breathing experiment showed significant error, leading us to initially conclude that the accelerometer hardware on the primary dongle is non- operational. Therefore, accelerometer data received in the rotating fan experiment was largely disregarded. However, after certifying that the primary dongle’s accelerometer was in working order, and in comparing results from repeating the experiment using real-time data analysis, it can be concluded that the dongle’s accelerometer is merely insufficient in recognizing the fan’s sinusoidal motion. Real-time data analysis revealed that the accelerometer requires higher rates of acceleration to show significant changes, and therefore would not apply in this experiement.
In the final set of experiments, the dongle’s temperature sensor was used to create real-time graphs when the dongle was placed in shifted environments of significantly differing ambient temperatures. Two primary conclusions could be drawn from the experimental data: the dongle’s temperature sensor was sufficient for measuring both ambient temperature changes and when looking at a filtered frequency graph, significant changes in temperature could be seen through large fluctuations in amplitude (alternatively, constant temperatures, both at room temperature and constant hot or cold also, showed smaller fluctuations in amplitude. In experimentation, the dongle showed both the capacity to measure ambient temperature changes and was shown capable of recognizing s freezer door having been left open.
10. Appendices

10.1 Appendix A: Data_Collect Matlab Code
%*** Data Log Program ***
%Time to obtain 1 batch of 8 data (everything) = 0.9 ms (info from uC timer0) (with a 512 us delay inserted between batches)
%Time to obtain 1 batch of 4 data (acceleration) = 0.7 ms (info from uC timer0) (with a 512 us delay inserted between batches)
%try-catch to disconnect serial object if there is any error in the code so that the COM port is available on next run
try
 home
 portnum = input('Enter the COM port number to which the module is connected (ex: 3): ');
 port = ['COM' int2str(portnum)];
 s = serial(port,'BaudRate',460800,'DataBits',8,'StopBits',1,'InputBufferSize',1e7); %create serial port object with required properties
 fopen(s) %connect object to device
 %mode = 2: Plot all sensor data
 a = input('Choose from the following:\nPress "v" to perform a voltage sweep\nPress "a" to obtain acceleration data only\nPress any other key to obtain all sensor data: ', 's');
 if (a ~= 'v')
 g = input('Press "d" for 1.5g mode. Press "g" if 6g mode is required: ', 's');
 end
 file = input('Enter the filename(.doc) for this data log: ', 's'); %obtain user's request
 if (a == 'v')
 ivcurves = [0 0 1000 50; 500 500 1500 50; 1000 1000 2000 50; 1500 1500 2500 50; 2000 2000 3000 50; 2500 2500 3500 50; 3000 3000 4000 50];
 trace = 'krgbmc';
 n = input('Enter number of iterations required: ');
 u = zeros(1,3);
 vd = zeros; id = zeros;
 count = 1;
% u(1) = 1000*input('Vgs (V): '); %obtain voltage value for Vgs - fixed Vgs value for a sweep of Vdd from Vmin to Vmax
% u(2) = 1000*input('Vmin (V): '); %obtain voltage sweep parameters for Vdd from user in volts
% u(3) = 1000*input('Vmax (V): ');
% u(4) = 1000*input('Vstep (V): ');
 u = ivcurves(1,:); %default parameters (in mV): Vgs = 0V, Vmin = 0V, Vmax = 4V, Vstep = 1mV
 Rs = 10e3; %series resistor on module is 100 kohms
 datnum = floor((u(3)-u(2))/u(4)) + 1; %number of values that should be read from uC
 fid = fopen(file, 'w');
 fprintf(fid, 'Sweep Parameters: Vs = %1.3f; Vmin = %1.3f; Vmax = %1.3f; Vstep = %1.3f; Rs = %0.1f kohms\n\n', u/1000, 0.001*Rs); %write data to file
 fprintf(fid, 'Voltage across divider (Rs in series with Device) (Vdd) \t Voltage across device (Vd) \t Current through device (Id)\n');
 while(count <= n)
 disp('Press any key to perform a voltage sweep');
 pause;
 fprintf(s, '%c', '3') %specify mode 3 to uC
 currtime = datestr(now); %note down date and time at which sweep starts (approx.)
 for i=1:length(u) %send parameters to uC in the order: Vgs, Vmin, Vmax & Vstep (in mV) as 2 bytes each (least significant byte first)
 v = floor(u(i)/256);
 fwrite(s, u(i)-(v*256), 'uint8');
 fwrite(s, v, 'uint8');
 end
 res = fread(s, 2*datnum, 'uint8'); %read values of voltage across device in 2 bytes each
 res = reshape(res,2,[]); %reshape res into a matrix with 2 rows (for the two bytes per voltage) and available no. of columns
 vd = (res(1,:)+res(2,:)*2^8)*4.8/1023; %find voltage at divider point: combine the two bytes of each voltage value into a 16-bit integer as a row matrix and scale each value to 4.8V (because supply in module is 4.8V)
 vds = vd - u(1)*1e-3;
 for i=1:length(vd) %find current through Rs
 id(i) = 1e6*((0.001*u(2) + 0.001*u(4)*(i-1) - vd(i))/Rs);
 end
 fseek(fid, 0, 'eof');
 fprintf(fid, '\n%s --> Sweep no: %d\n', currtime, count); %write time at which data collection started to file
 fprintf(fid, 'Vdd\tVd\tId\n(V)\t(V)\t(uA)');
 w = [(0.001*u(2):0.001*u(4):0.001*u(3))' (vds)' (id)'];
 dlmwrite(file, w, '-append', 'delimiter','\t', 'precision','%1.3f', 'roffset',2);
 figure(1)
% subplot(1,5,count)
 plot(vds, id, ['-' trace(mod(2,6)+1)])
 title('I-V Characteristics')
 xlabel('Vds (V)')
 ylabel('Id (uA)')
 legend(['Vgs = ' num2str(-1e-3*u(1)) ' V'])
 hold on
 Resistance = mean(vds(5:end)./(id(5:end)*1e-6))
 count = count + 1;
 end
 else
 if (a == 'a')
 datnum = 4; %user's choice of number of data values to receive
 else %if acceleration only, data is: time, acx, acy, acz
 datnum = 8; %if everything, data is: time, acx, acy, acz, h, t, p, l
% simdat = input('Enter the path to the pressure sensor data file exported from the simulator: ','s'); %code for module with signal conditioning circuitry for pressure - obtain simulated data from output file of Tina Simulator
% D = importdata(simdat); %file eg.: ...\Directed Research\Data Acquisition Module with the DLP-232PC\Spice\Tina-TI\Non-inverting amp for Pressure Sensor Output Files\Vin - 0-5,0.001V.txt
% f = pchip(D.data(:,2),D.data(:,1)); %interpolate pressure sensor's output corresponding to signal conditioning circuit's output from data
 end
 minute = input('Enter time (minutes) over which to log data: ');
 sec = minute*60;
 %create timer object for displaying time elapsed
 tim = timer('StartFcn','disp(''start'');', 'StopFcn','disp(''stop'');', 'TimerFcn','stat=false;', 'StartDelay',sec);
 fidb = fopen('datalogb.doc', 'w');
 i = 1;
 stat=true;
 currtime = datestr(now); %note time at which data colllection starts
 start(tim)
 tic
 fprintf(s, '%c', '2') %specify mode = 2 to the serial device
 fprintf(s, '%c', a) %convey user's choice of data to uC
 fprintf(s, '%c', g) %convey user's choice of accelerometer model to uC
 %obtain sensor data.
 while(stat == true)
 res = fread(s, 2*datnum, 'uint8'); %read data, 2 for two bytes per sample, 8 for seven different data: hum, tem, pre, acx, acy, acz, lig
 count = fwrite(fidb, res, 'uint8'); %write to file datalogb.doc
 end
 fprintf(s, '%c', 'q') %write 'q' to the device to stop sending values
 toc
 stop(tim)
 delete(tim);
 fidb = fopen('datalogb.doc', 'r');
 fb = dir('datalogb.doc'); %obtain size of file in bytes
 sizb = uint32(fix((fb.bytes)/(2*datnum))); %number of (time stamp + data) blocks
 fid = fopen(file, 'w');
 fprintf(fid, '%s --> Start\n\n', currtime); %write time at which data collection started to file
 if (a == 'a')
 fprintf(fid, 'Time(s), Acceleration(g) [x-axis, y-axis, z-axis]\n');
 fprintf(fid, 'Time, Acx, Acy, Acz\n');
 else
 fprintf(fid, 'Time(s), Acceleration(g) [x-axis, y-axis, z-axis], Relative Humidity(%%), Temperature(oC), Atmospheric pressure(mbar), Illuminance proportionate voltage(V)\n');
 fprintf(fid, 'Time, Acx, Acy, Acz, Hum, Tem, Pre, Ill\n');
 end
 temp2 = 0;
 time2 = 0;
 for i = 1:sizb
 res = fread(fidb, 2*datnum, 'uint8');
 res = reshape(res,2,[]); %reshape res into a matrix with 2 rows (for the two bytes per sample) and available no. of columns (siz)
 time1 = res(1,1)+res(2,1)*2^8;
 ax1 = res(1,2)+res(2,2)*2^8; %combine the two bytes of each sample into a 16-bit integer as a row matrix
 ay1 = res(1,3)+res(2,3)*2^8;
 az1 = res(1,4)+res(2,4)*2^8;
 if (a ~= 'a')
 h1 = res(1,5)+res(2,5)*2^8;
 t1 = res(1,6)+res(2,6)*2^8;
 p1 = res(1,7)+res(2,7)*2^8;
 l1 = res(1,8)+res(2,8)*2^8;
 end
 temp = ((time1*5.333e-6)+(3.333e-7)); %(time1*(4*32/24e6))+(2*4/24e6)
 if (temp < temp2)
 time2 = time;
 end
 time = time2 + temp;
 %calculate necessary sensor data
 if (g == 'g') %accelerometer mode - 6g
 ax = 4.854*(ax1*4.8/1023) - 8.0097;
 ay = 4.854*(ay1*4.8/1023) - 8.0097;
 az = 4.854*(az1*4.8/1023) - 8.0097;
 else %accelerometer mode - 1.5g
 ax = 1.25*(ax1*4.8/1023) - 2.0625;
 ay = 1.25*(ay1*4.8/1023) - 2.0625;
 az = 1.25*(az1*4.8/1023) - 2.0625;
 end
 if (a ~= 'a')
 h = 38.92*(h1*4.8/1023) - 41.98;
 t = (((log(((t1*4.8/1023)*1e4)/(5-(t1*5/1023))))/3730 + 8.86e-4).^(-1)) - 273;
 p = 1088.67875 - 67.875*p1;
% vp = ppval(f,(p1*4.8/1023)); %obtain pressure sensor output voltage value from voltage value sent by uC (signal conditioning circuit's output) through interpolation
% p = 628.9*vp + 11.1; %calculate the pressure
 l = l1*4.8/1023;
 end
 if (a == 'a') %write log to file specified by user
 res = [time ax ay az];
 fprintf(fid, '%1.4f, %1.2f, %1.2f, %1.2f\n', res);
 else
 res = [time ax ay az h t p l];
 fprintf(fid, '%1.4f, %1.2f, %1.2f, %1.2f, %1.2f, %1.2f, %1.2f, %1.2f\n', res);
 end
 temp2 = temp;
 end
 end
 fclose('all');
 fclose(s) %disconnect the serial port object from the device
 delete(s) %remove the object from memory
 clear s %remove the object from MATLAB workspace
% clear
catch
 fclose(s) %disconnect serial object from device first so that COM port is available for next run
 x=lasterror; %get the error message and line number
 disp(x.message)
 disp(x.stack)
end
10.2 Appendix B: Data_Filter Matlab Code
home
%Obtain the acceleration data
avg = 25; %number of values for the moving average
file = input('Enter the filename(.doc) for this data plot: ', 's'); %obtain the path to the data file from the user
D = importdata(file); %import data from the file
time = D.data(:, 1); %separate data into individual arrays
x = D.data(:, 2);
y = D.data(:, 3);
z = D.data(:, 4);
ma = (1/avg)*ones(1,avg); %moving averages of avg values of sensor data
xma = filter(ma, 1, x); %performs xma(i) = [x(i)+x(i-1)+... +x(i-(avg-1))]/avg
yma = filter(ma, 1, y);
zma = filter(ma, 1, z);
xma(1:avg-1) = []; yma(1:avg-1) = []; zma(1:avg-1) = [];
xma = xma.*9.80665; yma = yma.*9.80665; zma = zma.*9.80665;
xma = xma'; yma = yma'; zma = zma';
%Define the signal
T = time(end)-time(avg); %total sampling time
N = length(zma); %number of samples
t = time(avg:end)-time(avg); %time vector corresponding to acceleration values
y = input('Specify axis to consider (x, y or z): ','s'); %samples
switch y
 case 'x'
 y = xma;
 case 'y'
 y = yma;
 case 'z'
 y = zma;
 case 'l'
 l = D.data(:, 8);
 lma = filter(ma, 1, l);
 lma(1:avg-1) = [];
 lma = lma';
 y = lma;
end
figure(1) %plot of acceleration data
plot(t,y);
title('Signal')
%FFT of the signal:
%freqs. are 0,1/T,2/T,....,N/2T; T=N*dT where dT = sampling interval
%max freq. properly sampled (Nyquist) is (sampling freq.)/2 = 1/(2*dT)
f = 0:1/T:(N/2-1)*(1/T);
F = fft(y)/(N/2); %FFT of data
figure(2) %plot the FFT amplitude of the signal
plot(f,imag(F(1:floor(N/2))));
title('Imaginary part of FFT of signal')
P = abs(F(1:floor(N/2))).^2; %Power spectrum
figure(3) %plot power spectrum of signal
semilogy(f,P)
title('Power spectrum of signal')
%Frequency domain filtering:
filt = zeros(1,length(F)); %filter in frequency domain
filt(round((find(P == max(P(2:end)))-1)):round((find(P == max(P(2:end)))+30))) = 1; %note that P(1) is not considered because the noise in the signal has a large DC component.
s = [0:0.08:0.5].^2; %smooth the edges of the top hat filter
% filt = [filt(1:find(filt==1,1)-3) s ((s.^0.25+1)/max(s.^0.25+1)) filt(find(filt==1,1)+2*length(s)-3+1:find(filt==1,1,'last')-2*length(s)+3) (1-s) (1-(s.^0.25+1)/max(s.^0.25+1)) filt(find(filt==1,1,'last')+3+1:end)]; %requires that width of filt window be atleast 30 values
filt = [filt(1:find(filt==1,1,'last')-2*length(s)+3) (1-s) (1-(s.^0.25+1)/max(s.^0.25+1)) filt(find(filt==1,1,'last')+3+1:end)]; %requires that width of filt window be atleast 15 values
figure(5) %plot the filter function
plot(f,filt(1:floor(N/2)))
axis([0 f(find(filt==1,1,'last')+50) -inf +inf])
title('Frequency domain filter')
fF = F.*filt; %apply filter in frequency domain
fy = ifft(fF*N/2)*2; %inverse FFT to obtain time domain filtered signal
figure(6) %plot the filtered signal
plot(t,fy)
title('Filtered signal')
avx = sum(xma)/(length(xma)*9.80665)
avy = sum(yma)/(length(yma)*9.80665)
avz = sum(zma)/(length(zma)*9.80665)
avl = sum(lma)/(length(lma))
10.3 Appendix C: Examples of changes to Matlab code and Data Filtering
Full copies of original and altered Matlab codes not included so as to conserver space.
everynthpointtoplot=5;
illum_plot_dbo=db(memory_size,1);
%illum_plott_dbo=db(memory_size,1);
plot_dbo=db(memory_size,3);%retain every everynthpointtoplot datapoint
plott_dbo=db(memory_size,1);%retain every everynthpointtoplot timepoint
%%%
% info regarding sampling rate
fdt=8.244035685320316e-004;%time interval between samples, estimated from device performance
% fdt=6.521563665855604e-004; %if in mode 2, 'a'
fsample=1/fdt;%samplig frequency
% timer_db=db_add(timer_db,linspace(-memory_size*fdt,-fdt,memory_size).');%set initial time vector
timer_dbo.add(linspace(-memory_size*fdt,-fdt,memory_size).');
plott_dbo.add(everynthpointtoplot*linspace(-memory_size*fdt,-fdt,memory_size).');
%%%
% create figure windows with dummy data
% first column of accelerometer plots
close all
scrsz=get(0,'ScreenSize');
h=figure(1);
set(h,'Position',[scrsz(3)/20 scrsz(4)/10 scrsz(3)*.9 scrsz(4)*.8]);% graphics window created
clf;% clear content
plottimeoffset=1;%seconds
-accel');
%
%%%
% last row of plots, humidity, temperature, pressure, and illuminance
frequs=(0:fftsize/2-1)/(fftsize*fdt);
signal_fft_illum=zeros(fftsize,1);% dummy data
numplotpoints=40;
if numplotpoints>fftsize
 error('cannot plot more frequencies than generated')
end
timevec=timer_dbo.get(memory_size);
subplot(2,2,2)
[axx,fig43h,fig43bh]=plotyy(frequs(2:numplotpoints),abs(signal_fft_illum(2:numplotpoints)),...
 frequs(1:numplotpoints),abs(used_filter_spectrum(1:numplotpoints)),'stem','plot');
fig43ah=axx(1);
fig43bah=axx(2);
set(fig43ah,'ylim',[0 1.5])
set(fig43bah,'ylim',[0 1.05])
set(fig43h,'erasemode','normal');
title('Frequency spectrum of illum signal')
ylabel('illum spectrum mag');
subplot(2,2,4)
illum_filtered=illum_filtered_dbo.get(memory_size);
fig42h=plot(timevec,illum_filtered,'-');
fig42ah=gca;
set(fig42ah, 'xlim', [timevec(1) timevec(memory_size)+plottimeoffset]);
ylim([0 10])
set(fig42h,'erasemode','normal');
title('Frequency domain filtered illuminescence data')
ylabel('illum');
subplot(2,2,1)
illum=illum_dbo.get(memory_size);
illum_ma=illumma_dbo.get(memory_size);
fig41h=plot(timevec,illum,'-');
hold on
fig41bh=plot(timevec,illum_ma,'r-');
hold off
fig41ah=gca;
set(fig41ah, 'xlim', [timevec(1) timevec(memory_size)+plottimeoffset]);
ylim([0 0.7])
set(fig41h,'erasemode','normal');
title('Time evolution of illuminescence data')
ylabel('illum');
subplot(2,2,3)
 illum_vec=illum_dbo.get(memory_size);
 fig44h=plot(timevec,illum_vec,'-');
 fig44ah=gca;
 set(fig44ah, 'xlim', [timevec(1) timevec(memory_size)+plottimeoffset]);
 ylim([0 0.7])
 set(fig44h,'erasemode','normal');
 title('Unfiltered illuminance data')
 ylabel('Illuminance (lx)');
 xlabel('Time (s)');
%%%
 minute = input('Enter time (minutes) over which to log data: ');
 sec = minute*60;
num_reads=0;
aquisitiontime=sec;% in seconds
tic;%start timer
datao.set_mode(2);%start dumping data into the serial buffer
while (toc<aquisitiontime)% read while end-of-file is not reached
 num_reads=num_reads+1;% count number of reads, debugging purposes
 k=num_reads;
 new_data=datao.read(num_rows);
 %%
 accel_dbo.add(new_data(:,2:4));
 humidity_dbo.add(new_data(:,5));
 temp_dbo.add(new_data(:,6));
 pressure_dbo.add(new_data(:,7));
 illum_dbo.add(new_data(:,8));
 % compute moving average of most recently added data and add to ma_db
 % database
 % accel_dbo=db(memory_size,3);
%accelma_dbo=db(memory_size,3);
%filtered_dbo=db(memory_size,3);
%timer_dbo=db(memory_size,1);
%illumma_dbo=db(memory_size,1);
%illum_filtered_dbo=db(memory_size,1);
 [rows_read,ncol]=size(new_data);
 data_to_average=accel_dbo.get(rows_read+moving_average_n-1);%obtain moving_average_n-1 more data to avoid transients
 data_to_average=filter(ones(1,moving_average_n)/moving_average_n,1,data_to_average);%compute moving average
 accelma_dbo.add(data_to_average(moving_average_n:moving_average_n+rows_read-1,:));
 data_to_average_illum=illum_dbo.get(rows_read+moving_average_n-1);
 data_to_average_illum=filter(ones(1,moving_average_n)/moving_average_n,1,data_to_average_illum);%compute moving average
 illumma_dbo.add(data_to_average_illum(moving_average_n:moving_average_n+rows_read-1,:));
 %compute fft of num_rows of moving average data, filter it in the
 % frequency domain, compute inverse fft and store the filtered signal
 signal_fft_illum=illumma_dbo.get(fftsize);%get ma filtered data
 %signal_fft_illum=fft(hammingvector.*signal_fft_illum)/(fftsize/2)/2;% take Fourier transform
 signal_fft_illum=fft(signal_fft_illum)/(fftsize/2);% take Fourier transform
 signal_fft_illum=signal_fft_illum.*(used_filter_spectrum.'*ones(1,1)); % lp-filter the signal
 filtered_signal_illum=ifft(signal_fft_illum)*(fftsize/2)*60;
 illum_filtered_dbo.add(filtered_signal_illum(fftsize-rows_read+1:fftsize,:));%only add new data
 %compute time vector
 timer_dbo.add(new_data(:,1));
 plott_dbo.add(new_data(1:everynthpointtoplot:rows_read,1));%retain every 10th timepoint
 illum_plot_dbo.add(filtered_signal_illum(fftsize-rows_read+1:everynthpointtoplot:fftsize,:))
% timer_dbo.add(new_data(:,1));%use time stamp from controller for
% timing
 %%%
 % graphing
 % first column of acceleration plots
 timevec=timer_dbo.get(memory_size);
 illum=illum_dbo.get(memory_size);
 illum_ma=illumma_dbo.get(memory_size);
 illum_t=plott_dbo.get(memory_size);
 illum_filtered=illum_plot_dbo.get(memory_size);
 % compute fft of num_rows of moving average data, filter it in the
 % frequency domain, compute inverse fft and store the filtered signal
 signal_fft=accelma_dbo.get(fftsize);%get ma filtered data
% signal_fft=fft(hammingvector.*signal_fft)/(fftsize/2)/2;% take Fourier transform
 signal_fft=fft(signal_fft)/(fftsize/2);% take Fourier transform
 signal_fft=signal_fft.*(used_filter_spectrum.'*ones(1,3));% lp-filter the signal
 filtered_signal=ifft(signal_fft)*(fftsize/2);
 filtered_dbo.add(filtered_signal(fftsize-rows_read+1:fftsize,:));%only add new data
 %compute time vector
 %timer_dbo.add(new_data(:,1));
 %plott_dbo.add(new_data(1:everynthpointtoplot:rows_read,1));%retain every 10th timepoint
 %plot_dbo.add(filtered_signal(fftsize-rows_read+1:everynthpointtoplot:fftsize,:))
% timer_dbo.add(new_data(:,1));%use time stamp from controller for
% timing
 %%%
 % graphing
 % first column of acceleration plots
 timevec=timer_dbo.get(memory_size);
 acc=accel_dbo.get(memory_size);
 acc_ma=accelma_dbo.get(memory_size);
% %
 %set(fig41h,'xdata',timevec(1:everynthpointtoplot:end),'ydata',hum_vec(1:everynthpointtoplot:memory_size));
 %set(fig41ah, 'xlim', [timevec(1) timevec(memory_size)+0.1]);
 set(fig41h,'xdata',timevec(1:everynthpointtoplot:end),'ydata',illum(1:everynthpointtoplot:memory_size));
 set(fig41bh,'xdata',timevec(1:everynthpointtoplot:end),'ydata',illum_ma(1:everynthpointtoplot:memory_size));
 set(fig41ah, 'xlim', [timevec(1) timevec(memory_size)+0.1]);
 set(fig42h,'xdata',illum_t,'ydata',illum_filtered);
 set(fig42ah, 'xlim', [illum_t(1) illum_t(memory_size)+0.1]);
 set(fig43h,'xdata',frequs(2:numplotpoints),'ydata',abs(signal_fft_illum(2:numplotpoints,1)));
 %temp_vec=temp_dbo.get(memory_size);
 %set(fig42h,'xdata',timevec(1:everynthpointtoplot:end),'ydata',temp_vec(1:everynthpointtoplot:memory_size));
 %set(fig42ah, 'xlim', [timevec(1) timevec(memory_size)+0.1]);
 %pressure_vec=pressure_dbo.get(memory_size);
 %set(fig43h,'xdata',timevec(1:everynthpointtoplot:end),'ydata',pressure_vec(1:everynthpointtoplot:memory_size));
 %set(fig43ah, 'xlim', [timevec(1) timevec(memory_size)+0.1]);
%
 set(fig44h,'xdata',timevec(1:everynthpointtoplot:end),'ydata',illum_ma(1:everynthpointtoplot:memory_size));
 set(fig44ah, 'xlim', [timevec(1) timevec(memory_size)+0.1]);
 %axis equal
 %M(k)=getframe;
 %save movie.mat M
 %mpgwrite(M,jet,'movie.mpg');
 drawnow%force graphing before continuing execution
 %%%
end
11. Distribution list

Report number – Report title (1 copy total)

A.F.J. Levi

1 copy

Professor of Electrical Engineering

University of Southern California

3620 South Vermont Avenue, KAP 132

Los Angeles, California 90089-2533

Tel.
(213) 740-7318

Fax.
(213) 740-9280 fax

Email.
alevi@usc.edu
Web.
http://www.usc.edu/alevi

Pressure Sensor

Accelerometer

X 	 y	 z	

Temp. Sensor

1

0

0:00:14

0:00:13

Dongle

10 b

Light Detector

Humidity Sensor

MUX

ADC

USB Controller

Matlab

Port

USB Controller

Host

I/O Port

Filtered signal

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

9

8

7

6

5

4

3

2

0:00:12

0:00:11

0:00:10

0:00:42

0:00:39

0:00:35

0:00:19

0:00:14

0:00:27

F

E

D

C

B

A

PAGE

Page 44 of 44
DISTRIBUTION STATEMENT: Distribution authorized to all.

