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Abstract – Supersymmetric partner potentials calculated using single-particle non-reflecting
scattering states are localized complex potentials with real eigenvalues. If the initial potential is
a symmetric real potential then the partner potential is PT-symmetric. In particular cases, com-
plex conduction band edge profiles are found that yield supersymmetric partner total potentials
evaluated using scattering states in the context of self-consistent Schrödinger-Poisson equations.
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Introduction. – Hermitian supersymmetric quantum
mechanics provides an efficient method for finding pairs
of potentials with real-valued bound-state solutions to
the single-particle Schrodinger equation that have the
same energy eigenvalues and hence are isospectral [1–5].
While requiring Hamiltonians to be Hermitian is suffi-
cient to ensure real eigenvalues, this constraint may be
unnecessary [6], since non-Hermitian Hamiltonians, in-
cluding Hamiltonians with unbroken parity-time symme-
try (PT symmetry), can also have real eigenvalues [7,8].
The application of supersymmetric quantum mechanics to
optical systems is an active research topic [9–12], and non-
Hermitian quantum mechanics and PT symmetry have
also been applied to classical optics systems [13].

Prior research on the application of supersymmetric
quantum mechanics to non-Hermitian Hamiltonians has
provided methods for finding complex-valued partner po-
tentials of real-valued [8] or complex-valued [14] poten-
tials. While this includes work on the use of scattering
states with complex eigenvalues (Gamov states) to find
complex-valued partner potentials [15,16], to the best of
our knowledge, prior work has not addressed the use of
real-valued scattering states to find complex-valued part-
ner potentials.

In the present work, it is shown that non-reflecting scat-
tering states can be used to find localized complex-valued
partner potentials. In the case where the initial poten-
tial is symmetric, it is shown that the corresponding part-
ner potential is PT-symmetric. Furthermore, it is shown
that semi-infinite periodic partner potentials can be gen-
erated using scattering states with a non-zero reflected

(a)E-mail: abouzaid@usc.edu (corresponding author)

component. For numerical simulations, these partner po-
tentials can be regularized using a slowly varying envelope
function. The use of scattering states to evaluate partner
total potentials is also examined in the context of self-
consistent Schrödinger-Poisson equations.

Supersymmetric quantum mechanics. – Consider
a particle of mass m moving in a real one-dimensional po-
tential V (x), and let ψ(x) be an eigenstate of the Hamilto-

nian Ĥ = − h̄2

2m
d2

dx2 + V (x) with eigenenergy E. The wave
function ψ(x) may be complex, as in the case of scattering
states. Let

W (x) = − h̄√
2m

ψ′

ψ
, (1)

with ψ′ = d
dxψ, be the superpotential, so that

Â+ =
h̄√
2m

d

dx
+W (x), (2)

Â− = − h̄√
2m

d

dx
+W (x), (3)

where Â− = [Â+]† if W (x) is real, and

Ĥ(−) = Â−Â+ = − h̄2

2m

d2

dx2
+W 2(x)− h̄√

2m

dW

dx
, (4)

Ĥ(+) = Â+Â− = − h̄2

2m

d2

dx2
+W 2(x) +

h̄√
2m

dW

dx
(5)

are supersymmetric partner Hamiltonians, with potentials

V (−) = W 2(x)− h̄√
2m

dW

dx
, (6)

V (+) = W 2(x) +
h̄√
2m

dW

dx
. (7)
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The Hamiltonians Ĥ(−) and Ĥ(+) have the same en-
ergy eigenvalues and so are isospectral, with the possible
exception that there may be no eigenstate of Ĥ(+) with
the same energy as the ground state of Ĥ(−). Given an
eigenfunction ψ(−) of Ĥ(−) with eigenenergy E(−),

ψ(+) =
1√
E(−)

Â+ψ(−) (8)

is an eigenstate of Ĥ(+) with eigenenergy E(+) = E(−).
The potentials V (−) and V (+) also exhibit similar scat-

tering characteristics. In particular, if V (−)(x → ±∞) and
V (+)(x → ±∞) are finite constants, so that W (x → ±∞)
is also finite, then scattering eigenstates with real eigenen-
ergies exist. If the transmission coefficients of V (−) and
V (+) are t(−) and t(+), and the reflection coefficients are
r(−) and r(+), respectively, then [5,17]

t(−)(k) =
W (+∞)− i h̄k′

√
2m

W (−∞)− i h̄k√
2m

t(+)(k), (9)

r(−)(k) =
W (−∞) + i h̄k√

2m

W (−∞)− i h̄k√
2m

r(+)(k), (10)

where k is the wave number of the scattering state for
x → −∞ while k′ is the wave number of the scattering
state for x → +∞.

Supersymmetric partners calculated from scat-

tering states. – Typically, the eigenstate ψ(x) used to
calculate partner potentials is the lowest-energy bound

state. Higher-energy bound states are avoided due to the
fact that they have zeros that create singularities in the
partner potentials. However, other types of states can
be used to calculate partner potentials, including scatter-

ing states, which have no zeros. Gamov states (scattering
states with complex eigenenergies) have previously been
used to find non-Hermitian partner Hamiltonians of Her-
mitian Hamiltonians [15,16]. Scattering states with real
eigenenergies, however, have generally been avoided in the
literature, perhaps because they are not normalizable. In
the following, it is shown that such scattering states can
nevertheless be used to find complex-valued partner po-
tentials of real-valued initial potentials.

Partner potentials calculated from non-reflecting scat-

tering states. If a scattering state ψk(x) with wave num-
ber k is used in eq. (1) to evaluate the superpotential
W , then both W and the partner potential V (+) will be
complex-valued, because the wave function ψk is complex-
valued. Furthermore, because W is complex in this case,
the operators Â− and Â+ are not one another’s adjoint
operators (i.e., Â− �= [Â+]†). However, as the operators
satisfy the required commutation relations, eqs. (1)–(7)
can be used with complex superpotentials W calculated
from scattering states to yield complex-valued potentials
V (+) that are partner potentials of real-valued potentials
V (−).

If a scattering state with a non-zero reflected component
is used to calculate a superpotential as in eq. (1), then the
evaluated superpotential will have a periodic part extend-
ing infinitely in the direction of reflection, so that W (−∞)
is undefined. This is because the reflected component of
a scattering state creates a semi-infinite standing wave.
Nevertheless, with appropriate regularization, such a po-
tential exhibits properties similar to its partner potential.
On the other hand, if the superpotential is evaluated

using a non-reflecting scattering state, then the potential
will be localized, and regularization is not needed. Typ-
ically, non-reflecting scattering states are resonant scat-
tering states with unity transmission. However, certain
potentials, such as the sech2 potential [5,18], are reflec-
tionless, so that all scattering states in such potentials are
non-reflecting scattering states.
If a non-reflecting scattering state ψkr

with wave num-
ber kr at x → −∞ and k′r at x → +∞ is used to calculate
the partner potentials, then

W (−∞) = − h̄√
2m

ψ′
kr
(−∞)

ψkr
(−∞)

= −i
h̄kr√
2m

, (11)

W (+∞) = − h̄√
2m

ψ′
kr
(+∞)

ψkr
(+∞)

= −i
h̄k′r√
2m

, (12)

provided that V (−)(x → ±∞) is finite, constant, and
less than the eigenenergy of the state Ekr

. It follows
that V (+)(x → ±∞) is also finite and constant. In
this case, eqs. (9) and (10) are applicable without further
adjustment.
In particular, if V (−)(x → −∞) = V (−)(x → +∞), so

that W (−∞) = W (+∞) and kr = k′r, then it follows from
eq. (9) that

t(−)(k) = t(+)(k). (13)

Substituting W (−∞) = −i h̄kr√
2m

into eq. (10) gives

r(+)(k) =
k + kr
k − kr

r(−)(k), (14)

so that r(−)(k) �= r(+)(k). Note that r(+) appears to have
an additional pole at k = kr. However, since kr is the wave
number of a non-reflecting scattering state of V (−), then
r(−)(kr) = 0. This zero cancels the pole, so that r(+)(kr) is
finite. Also, r(+) can have a value much greater than unity
near k = kr due to the fact that H(+) is a non-Hermitian
Hamiltonian with V (+) complex. While the state ψ

(−)
kr

is

a non-reflecting scattering state, ψ
(+)
kr

has a finite reflected
component.
This lack of a corresponding non-reflecting scattering

state can be understood as being analogous to the lack of a

bound state ψ
(+)
0 when a bound state ψ

(−)
0 is used to calcu-

late partner potentials. In that case, ψ
(+)
0 ∝ Â+ψ

(−)
0 = 0.

Similarly, if a non-reflecting scattering state ψ
(−)
kr

is used

to evaluate partner potentials, then Â+ψ
(−)
kr

= 0. How-
ever, partner potentials evaluated using scattering states
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Fig. 1: (a) Real-valued rectangular potential well V (−)(x) and
(b) its complex partner potential V (+)(x). The partner poten-
tial V (+) is calculated using the lowest-energy resonant scat-
tering eigenstate of Ĥ(−). The solid black curves indicate the
real part of the potential, and the dashed red curves indicate
the imaginary part of the potential. The rectangular potential
well has thickness w = 8nm and potential V0 = −0.2 eV, and
the particle has effective electron mass m∗

e = 0.07×m0 where
m0 is the bare electron mass.

still admit a scattering state at E = Ekr
, though it is not

a non-reflecting state.

If V (−) and V (+) are partner potentials calculated us-
ing a scattering state of Ĥ(−), then, as in the case
of bound states, if ψ(−) is an eigenstate of Ĥ(−) then
ψ(+) = Â+ψ(−) is an eigenstate of Ĥ(+). This applies
regardless of whether ψ(−) is a scattering state or a bound
state. Unlike in the case of partner potentials calculated
using bound states, there is no bound state of Ĥ(−) for
which there is no corresponding bound state of Ĥ(+) if a
scattering state is used to evaluate the partner potentials.
However, due to the non-hermiticity of Ĥ(+), its bound
states may be non-orthogonal.

Figure 1 shows a real-valued rectangular potential well
V (−) of thickness w = 8nm and potential V0 = −0.2 eV,
and its complex partner potential V (+) calculated using

the lowest-energy resonant scattering state ψ
(−)
kr1

of Ĥ(−),

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5
0 /2 3 /2 2

0.5

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

(a)

(b)

Fig. 2: (a) The magnitude squared |t|2 and phase φt of the
transmission amplitude t of a rectangular potential well V (−)

(solid black curves) and its partner potential V (+) (dashed red
curves), where V (+) is calculated using the lowest-energy reso-

nant scattering eigenstate of Ĥ(−). (b) The magnitude squared
|r|2 of the reflection amplitude r of a rectangular potential well
V (−) (solid black curve) and its partner potential V (+) (dashed
red curve), where V (+) is calculated using the lowest-energy
resonant scattering eigenstate of Ĥ(−). The rectangular poten-
tial well has thickness w = 8nm and potential V0 = −0.2 eV,
and the particle has effective electron mass m∗

e = 0.07×m0.

with energy Ekr1
≈ 0.135 eV. Note the PT symmetry

with symmetric real part and anti-symmetric imaginary
part of V (+).

Figure 2(a) shows the magnitude squared of the trans-
mission amplitudes |t(−)|2 (solid black line) and |t(+)|2
(dashed red line), as well as the phases of the transmis-

sion amplitudes φ
(−)
t (solid black line) and φ

(+)
t (dashed

red line). Both the magnitudes and phases of the trans-
mission amplitudes are plotted as a function of the en-
ergy E(k). Note that the t(−) and t(+) are equal in
both magnitude and phase, as predicted by eq. (9) when
W (−∞) = W (+∞). In contrast, fig. 2(b) shows the
magnitude squared of the reflection amplitudes |r(−)|2
and |r(+)|2 as a function of the energy E(k). The mag-
nitudes of the reflection amplitudes are not equal, as
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indicated by eq. (14). Furthermore, while |r(−)(kr1)|2 = 0,
|r(+)(kr1)|2 ≈ 5.68 > 1, indicating gain due to the non-
Hermiticity of the Hamiltonian H(+).
As expected in the case of partner potentials calcu-

lated from scattering states, both bound states of Ĥ(−)

have corresponding bound states of Ĥ(+) with the same
eigenenergies. However, the bound states of Ĥ(+) can be
similar because they are non-orthogonal due to the non-
Hermiticity of Ĥ(+).

Symmetric potentials have PT-symmetric partner po-

tentials. While the potential V (−) shown in fig. 1 is
symmetric, the corresponding partner potential V (+) is
PT-symmetric. In general, the partner potential of a sym-
metric potential is PT-symmetric if it is calculated from a
non-reflecting scattering state.
Consider a real-valued potential V (x) that is symmet-

ric, so that V (x) = V (−x). Suppose furthermore that
V (x → ±∞) is finite, so that scattering states exist. For
an electron incident upon such a potential barrier, there
are energies Ekr

at which the magnitude of the reflection
coefficient is zero (|r| = 0). If ψkr

(x) is the wave function
of a non-reflecting scattering state with energy Ekr

in the
symmetric potential V (x), then it can be written as

ψkr
(x) = eiφψ

(0)
kr

(x), (15)

where ψ
(0)
kr

(x) is a PT-symmetric function.
The wave function ψkr

can be substituted into
eqs. (1), (6), and (7) to evaluate the supersymmetric part-
ner potentials

V (−) = V (x)− Ekr
, (16)

V (+) = −V (−) +
h̄2

m

[

ψ′
kr

ψkr

]2

. (17)

Since ψ
(0)
kr

(x) is PT-symmetric, its first derivative ψ
(0)′

kr
(x)

is anti-PT-symmetric, so that

ψ′
kr

ψkr

=
ψ
(0)′

kr

ψ
(0)
kr

(18)

is also anti-PT-symmetric. It follows that [
ψ′

kr

ψkr

]2 is PT-

symmetric, and

V (+) = −V (−) +
h̄2

m

[

ψ′
kr

ψkr

]2

(19)

is PT-symmetric, since V (−) is a symmetric real poten-
tial. Thus, partner potentials of symmetric potentials are
PT-symmetric if they are evaluated using non-reflecting
scattering states.

Partner potentials calculated from states with nonzero

reflection. Due to standing waves created by the re-
flected component of states with non-zero reflection, part-
ner potentials calculated using such states contain a
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Fig. 3: A partner potential V (+)(x) of the rectangular potential
well V (−)(x) shown in fig. 1(a). The partner potential V (+)(x)
is calculated using an off-resonance scattering eigenstate of
V (−)(x) with energy eigenvalue Ekm1

≈ 0.280 eV. The solid
black curves indicate the real part of the potential, and the
dashed red curves indicate the imaginary part of the potential.
The rectangular potential well has thickness w = 8nm and
potential V0 = −0.2 eV, and the particle has effective electron
mass m∗

e = 0.07×m0.

periodic part extending infinitely in the direction of re-
flection. In addition to this potential being undefined at
infinity, the equations in eqs. (9) and (10) are not imme-
diately applicable to such a potential due to W (±∞) be-
ing undefined. For example, fig. 1(a) shows a real-valued
rectangular potential well V (−) of thickness w = 8nm
and potential V0 = −0.2 eV and fig. 3 shows its com-
plex oscillatory partner potential V (+) calculated us-
ing the off-resonance eigenstate ψkm1

with eigenenergy
Ekm1

≈ 0.280 eV. This energy corresponds to the lowest-
energy transmission local minimum.
The scattering characteristics of such a potential may be

determined by applying a real envelope function to V (+)

that varies slowly with respect to the period of the poten-
tial, is unity at the location of the potential barrier V (−),
and goes to zero as x → −∞ or +∞, depending on which
side the periodic part of the potential appears. Rather
than determine the envelope function by formal optimiza-
tion methods, a raised cosine of the form

f(x) =

⎧

⎨

⎩

1 + cos(2πx/d)

2
, x ∈ [−d/2, d/2] ,

0, x /∈ [−d/2, d/2]
(20)

was used with d = 195 nm to regularize the potential
shown in fig. 3. This value was found by trial and error,
taking into account the fact that larger values of d yield
lower error, but are less computationally efficient. Balanc-
ing these two competing considerations is an optimization
problem.
Figure 4(a) shows the corresponding magnitude squared

of the transmission amplitude |t|2 and the phase of the
transmission amplitude φt for both V (−) (solid black line)
and V (+) (dashed red line). The transmission amplitudes
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Fig. 4: (a) The magnitude squared |t|2 and phase φt of the
transmission amplitude t of a rectangular potential well V (−)

(solid black curve) and its partner potential V (+) (dashed red
curve), where V (−)(x) is calculated using an off-resonance scat-
tering eigenstate of V (−)(x). (b) The magnitude squared |r|2 of
the reflection amplitude r of a rectangular potential well V (−)

(solid black curve) and its partner potential V (+) (dashed red
curve), where V (+)(x) is calculated using an off-resonance scat-
tering eigenstate of V (−)(x). The rectangular potential well
has thickness w = 8nm and potential V0 = −0.2 eV, and the
particle has effective electron mass m∗

e = 0.07×m0.

are equal in both magnitude and phase. Similar to the
non-reflecting case discussed previously, the reflection am-
plitudes of states scattering from V (+) and V (−) are re-
lated by the equation

r(+) =
k + k0
k − k0

r(−), (21)

where k0 is the wave number of the state used to calculate
V (+) and V (−). Consequently, |r(+)|2 can exceed unity, as
seen in fig. 4(b). However, unlike the non-reflecting case,
the pole at k = k0 is not cancelled by a zero in r(−), so
|r(+)|2 → ∞ as k → k0. If V (+) is regularized using an
envelope function, then |r(+)|2 will be finite at k = k0, but
will approach infinity as the width of the envelope function
approaches infinity.

Self-consistent Schrödinger-Poisson equations

with partner total potentials evaluated from

scattering states. – It has previously been shown that
bound-state solutions in doped semiconductors can be

used to find conduction band edge profiles V
(+)
be and

V
(−)
be that yield supersymmetric partner total potentials

V
(+)
tot and V

(−)
tot when solved self-consistently using the

Schrödinger and Poisson equations [19]. This is done by

finding the total potential V
(−)
tot corresponding to a given

conduction band edge profile V
(−)
be , and using the ground

state wave function ψ
(−)
0 to evaluate its partner total

potential V
(+)
tot by the usual methods of supersymmetric

quantum mechanics. The bound states ψ
(+)
i are then

used to evaluate the electrostatic potential energy V
(+)
c

generated by the charges, from which the conduction

band edge profile V
(+)
be = V

(+)
tot − V

(+)
c is evaluated.

If instead the partner total potential V
(+)
tot is evaluated

using a scattering state ψk, then V
(+)
tot will be complex-

valued. In general, complex potentials do not necessarily

have real eigenvalues, but since V
(+)
tot is the partner of the

real-valued potential V
(−)
tot , its eigenvalues are real. How-

ever, it is not presently known under what circumstances
eigenvalues can be guaranteed to be real when iterating to

find V
(+)
tot from V

(+)
be .

Figure 5(a) shows a rectangular potential well conduc-

tion band edge profile V
(−)
be of thickness w = 8nm and

potential V0 = −0.2 eV, while fig. 5(b) shows the corre-

sponding total potential V
(−)
tot . The ionized donor den-

sity is ND = 1.5 × 1018 cm−3 for −10 nm < x < 10 nm,
and zero elsewhere. The effective electron mass is m∗

e =
0.07 × m0, the permittivity is ǫr0 = 13.2, and the tem-
perature is T = 0K. For these parameters, only the two
bound states are occupied and contribute to the charge
distribution in the system (the scattering states are unoc-
cupied). Nevertheless, the lowest-energy resonant scatter-

ing state ψ
(−)
kr1

of Ĥ(−) with energy Ekr1
≈ 0.191 eV was

used to evaluate V
(+)
tot (fig. 5(d)), a supersymmetric part-

ner total potential of V
(−)
tot . Figure 5(c) shows the conduc-

tion band edge profile V
(+)
be that, when substituted into

the Schrödinger-Poisson equations, yields the total poten-

tial V
(+)
tot . Remarkably, in this case, even though V

(+)
be is

complex-valued, the eigenvalues evaluated while iterating

to find V
(+)
tot are real, ensuring that the total potential is

static and converges. The partner potentials V
(−)
tot and

V
(+)
tot result in isospectral systems with equal transmission

spectra (eq. (13)) and with reflection spectra related by
eq. (14).

Applications. – Supersymmetry with scattering
states in the context of self-consistent Schrödinger-Poisson
equations is relevant to condensed matter systems. The
application of Schrödinger-Poisson equations to systems
exhibiting supersymmetry and PT-symmetry builds on
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Fig. 5: (a) A rectangular potential well conduction band edge profile V
(−)
be and (b) the corresponding total potential V

(−)
tot .

(c) A conduction band edge profile V
(+)
be and (d) the corresponding total potential V

(+)
tot that is a supersymmetric partner

potential of V
(−)
tot . The total potential V

(+)
tot is evaluated from the lowest-energy resonant scattering state of V

(−)
tot . The solid black

curves indicate the real part of the potential, and the dashed red curves indicate the imaginary part. The rectangular potential
well has thickness w = 8nm and potential V0 = −0.2 eV. The effective electron mass ism∗

e = 0.07×m0, permittivity is εr0 = 13.2,
temperature is T = 0K, and ionized donor density is ND = 1.5× 1018 cm−3 for −10 nm < x < 10 nm, and zero elsewhere.

prior work introducing nonlocal exchange effects to
Schrödinger-Poisson equations [20] or exploring the exis-
tence of multiple solutions in some circumstances [21].
The notion of supersymmetry with scattering states

more generally applies naturally to classical optical sys-
tems. Supersymmetry of classical optical systems can
be understood using an analogy between the Schrödinger
equation and the Helmholtz equation [22,23]. Dividing
the usual form of the one-dimensional time-independent
Schrödinger equation of a system with potential V (x) by
−h̄2

2m gives
[

d

dx2
− 2m

h̄2 V (x)

]

ψ(x) = −2m

h̄2 Eψ(x). (22)

Substituting − 2m
h̄2 V (x) 	→ ω2μ(x)ǫ(x), − 2m

h̄2 E 	→ β2 and
ψ(x) 	→ E(x) yields

[

d

dx2
+ ω2μ(x)ǫ(x)

]

E(x) = β2E(x), (23)

which is the Helmholtz equation for a waveguide with
transverse permittivity and permeability profiles ǫ(x) and
μ(x), where β is the phase constant in the waveguide. If
the permeability μ(x) = μ is a real constant, then the per-
mittivity ǫ(x) becomes analogous to the potential V (x) in
supersymmetric quantum mechanics, and partner permit-
tivity profiles can be evaluated using equations analogous
to eqs. (6) and (7).

The application of supersymmetry to classical optical
systems is an active field of both theoretical [9,10] and ex-
perimental [11,12] research. There is also an active effort
to apply results from non-Hermitian and PT-symmetric
quantum mechanics to classical optics [13], including
the application of supersymmetry to non-Hermitian or
PT-symmetric optical structures [24]. Such research is
facilitated by the fact that complex-valued permittivi-
ties are a feature of classical optical systems with gain
or loss. The present results contribute to this research
by revealing a link between PT-symmetric structures and
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real-valued symmetric structures through the use of non-
reflecting scattering states to evaluate supersymmetric
partners. This provides a new method for designing PT-
symmetric optical structures that are isospectral to real-
valued symmetric structures and possess equal amplitude
and phase on transmission.

Conclusion. – It has been shown that supersymmet-
ric partner potentials evaluated from quantum mechanical
single-particle non-reflecting scattering states are localized
in space. This provides a method for finding complex-
valued potentials with real eigenvalues that are isospectral
to known real-valued potentials, and have similar scatter-
ing characteristics. For the special case when the initial
potential is spatially symmetric, the partner potential is
PT-symmetric. Partner potentials evaluated from reflect-
ing scattering states can be numerically simulated after
regularization using an appropriate envelope function.
Scattering states can also be used to find supersymmet-

ric partner total potentials in the context of self-consistent
Schrödinger-Poisson equations, and semiconductor con-
duction band edge profiles that yield these supersymmet-
ric partner total potentials can be evaluated. Although
the corresponding conduction band edge profiles are
complex-valued, it has been shown that the total poten-
tial nevertheless converges as expected in particular cases.
Further research could examine under what conditions
such complex-valued conduction band edge profiles con-
verge to the target total potential.

Data availability statement: The data that support the
findings of this study are available upon reasonable request
from the authors.
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