% Fig_2_4.m % Essential Semiconductor Laser Device Physics % Plot gain and spontaneous emission as function of photon energy % for carrier 3 different carrier densities % uses function mu.m and fermi.m % carrier density n(m-3), temperature kelvin(K) % clear all clf; FS = 18; %label fontsize 18 FSN = 16; %number fontsize 16 LW = 2; %linewidth % Change default axes fonts. set(0,'DefaultAxesFontName', 'Times New Roman'); set(0,'DefaultAxesFontSize', FSN); % Change default text fonts. set(0,'DefaultTextFontname', 'Times New Roman'); set(0,'DefaultTextFontSize', FSN); hbartxt=['\fontname{MT Extra}h\fontname{Times New Roman}']; %******************** constants **************************** echarge=1.60219e-19; %Electron charge C hbar=1.0545928e-34; %Planck's constant J s c = 2.997925e8; %Speed of light in vacuum m s-1 kB=8.617e-5; %Boltzmann constant eV K-1 epsilon0=8.85419e-12; %Permittivity of free space [F m-1] m0=9.10956e-31; %Bare electron mass kg me=0.07*m0; %Effective electron mass kg mhh=0.5*m0; %Effective hhole mass kg mr=1/(1/me+1/mhh); %Reduced electron mass rerr=1e-3; %Relative error nr=3.3; %Refractive index Eg=1.4 %Band gap energy eV kelvin=300.0; %Temperature K kBT=kB*kelvin; %Thermal energy eV beta=1/kBT; %Inverse thermal energy eV-1 npoints=300; %number of points in plot const=2.64e4; %GaAs constant gives gain 330 cm-1 at n = 2E18 cm-3 deltae=0.0004; %energy increment Emax=Eg+(deltae*npoints); %maximum energy for k=1:1:3 n=k*1.e18; %Carrier density cm-3 ncarrier=n*1e6; %Convert carrier density to m-3 muhh=mu(mhh,ncarrier,kelvin,rerr) %Call mu chemical potential for holes mue=mu(me,ncarrier,kelvin,rerr) %Call mu chemical potential for electrons deltamu=mue+muhh for j=1:npoints Energy(j)=(j-1)*deltae; %Photon energy - Eg Ehh=(Energy(j))/(1+mhh/me); %Energy in hole band Ee=(Energy(j))/(1+me/mhh); %Energy in conduction band fhh=fermi(beta,Ehh,muhh); %Call Fermi function for holes fe=fermi(beta,Ee,mue); %Call Fermi function for electrons gain(j)=const*(Energy(j)^0.5)*(fe+fhh-1); rspon(j)=(const)*(Energy(j)^0.5)*(fe*fhh); end ttl=(['\itn\rm_{min}=',num2str(1),'\times10^{18}cm^-^3, \itn\rm_{max}=',... num2str(k),'\times10^{18}cm^-^3, \itm\rm_e=',num2str(me/m0),... '\itm\rm_0, \itm\rm_{hh}=',num2str(mhh/m0),... 'm_0, \itT\rm=',num2str(kelvin),... 'K, \itE\rm_g=',num2str(Eg),'eV']); %******************** plot figures ************************ figure(1) hold on; plot(Energy+Eg, gain, 'LineWidth',LW); axis([Eg Emax -1500 1000]); xlabel(['Photon energy, ',hbartxt,'\omega (eV)']); ylabel('Optical gain, \itg\rm_{opt} (cm^{-1})'); title(ttl); grid on; hold off; figure(2) hold on; plot(Energy+Eg,rspon,'r','LineWidth',LW); axis([Eg Emax 0 1500]); xlabel(['Photon energy, ',hbartxt,'\omega (eV)']); ylabel('Spontaneous emission, \itrsp\rm (arb.)'); title(ttl); grid on; end hold off;