%Fig6_3a.m %Essential Electron Transport for Device Physics %calculates optical phonon scattering rates %eg GaAs meff=0.067 wLO=36.3, wTO=33.3, epsi_inf=11.1 %InAs meff=0.021 wLO=30.2, wTO=27.1, epsi_inf=11.8 %InP meff=0.077 wLO=42.7, wTO=38.2, epsi_inf=9.52 % clear all; clf; FS = 12; %label fontsize 18 FSN = 12; %number fontsize 16 LW = 1; %linewidth % Change default axes fonts. set(0,'DefaultAxesFontName', 'Times'); set(0,'DefaultAxesFontSize', FSN); % Change default text fonts. set(0,'DefaultTextFontname', 'Times'); set(0,'DefaultTextFontSize', FSN); hbar_txt=['\fontname{MT Extra}h\fontname{Times}']; mfpl_txt=['\fontname{MT Extra}l\fontname{Times}']; %************************************************************************** m0=9.1095e-31; %bare electron mass [kg] meff=0.07; %effective electron mass in conduction band wLO=36.3; %longitudinal optic phonon energy [meV] wTO=33.3; %transverse optic phonon energy [meV] epsi_inf=11.1; %high frequency dielectric constant epsi_0=epsi_inf*((wLO/wTO)^2); %low frequency dielectric constant hbar=1.05459e-34; %Plank constant [J s] e0=8.8541878e-12; %Permittivity of free space [F m^-1] echarge=1.60219e-19; %electron charge [C] kB=1.3806503e-23; %Boltzmann constant [J K^-1] %************************************************************************** % epsilon zero, epsilon inf., electron mass, phonon frequency %************************************************************************** emax=300; %maximum electron energy [meV] npoints=300; %number of points in plot tmin =0.0; %minimum temperature [K] tstep=100.0; %temperature step [K] tmax =500; %max temperature [K] % % Set up plot coordinates % xmin=0.0; %minimum energy in plot xmax=emax; %maximum energy in plot [meV] ymin=0.0; %minimum scattering rate in plot ymax=1.5e13; %maximum scattering rate in plot % % setup prefactor in scattering rate calaculation % g0=m0*meff*(echarge^2)*(echarge*wLO/1000)/(4*pi*e0*(hbar^2)); g0=g0/(sqrt(2*m0*meff*echarge)); g0=g0*((1.0/epsi_inf)-(1.0/epsi_0)); %******************** loop ******************* eEmeV=linspace(0.0,emax,npoints); %electron energy [meV] eE=eEmeV/1000; %electron energy [eV] for Ttemp=tmin:tstep:tmax %main loop in temperature beta=1/(kB*Ttemp); %inverse thermal energy in J nq=1.0/(exp(beta*wLO*echarge/1000)-1.0); %Bose thermal occupation factor % tmp1=abs((sqrt(eEmeV+wLO)+sqrt(eEmeV))./(sqrt(eEmeV+wLO)-sqrt(eEmeV))); % tmp2=abs((sqrt(eEmeV)+sqrt(eEmeV-wLO))./(sqrt(eEmeV)-sqrt(eEmeV-wLO))); % g1=nq*log(tmp1);%phonon absorption % g2=(nq+1.0)*log(tmp2);%phonon emission tmp1=2*asinh(sqrt(eEmeV/wLO)); tmp2=2*asinh(sqrt((eEmeV-wLO)/wLO)); tmp2=real(tmp2);%remove terms when eEmeV