%Fig6_3b.m %Essential Electron Transport for Device Physics %calculates optical phonon scattering rates for fixed electron energy %as function of temperature, T %eg GaAs meff=0.067 wLO=36.3, wTO=33.3, epsi_inf=11.1 %InAs meff=0.021 wLO=30.2, wTO=27.1, epsi_inf=11.8 %InP meff=0.077 wLO=42.7, wTO=38.2, epsi_inf=9.52 % clear all; clf; FS = 12; %label fontsize 18 FSN = 12; %number fontsize 16 LW = 1; %linewidth % Change default axes fonts. set(0,'DefaultAxesFontName', 'Times'); set(0,'DefaultAxesFontSize', FSN); % Change default text fonts. set(0,'DefaultTextFontname', 'Times'); set(0,'DefaultTextFontSize', FSN); hbar_txt=['\fontname{MT Extra}h\fontname{Times}']; %************************************************************************** m0=9.1095e-31; %bare electron mass (kg) meff=0.07; %effective electron mass in conduction band wLO=36.3; %longitudinal optic phonon energy (meV) wTO=33.3; %transverse optic phonon energy (meV) epsi_inf=11.1; %high frequency dielectric constant epsi_0=epsi_inf*((wLO/wTO)^2); %low frequency dielectric constant hbar=1.05459e-34; %Plank constant (J s) e0=8.8541878e-12; %Permittivity of free space (F m^-1) echarge=1.60219e-19; %electron charge (C) kB=1.3806503e-23; %Boltzmann constant (J K^-1) %************************************************************************** % epsilon zero, epsilon inf., electron mass, phonon frequency %************************************************************************** tmin=0.0; %minimum temperature in K tstep=1.0; %temperature step in K tmax=500; %max temperature in K % % Set up plot coordinates % xmin=0.0; %minimum energy in plot xmax=tmax; %maximum energy in plot (meV) ymin=0.0; %minimum scattering rate in plot ymax=1.5e13; %maximum scattering rate in plot % % setup prefactor in scattering rate calaculation % g0=m0*meff*(echarge^2)*(echarge*wLO/1000)/(4*pi*e0*(hbar^2)); g0=g0/(sqrt(2*m0*meff*echarge)); g0=g0*((1.0/epsi_inf)-(1.0/epsi_0)); %******************** loop ******************* eEmeV=[wLO/2,100,200,300]; %electron energy in meV eE=eEmeV/1000; %electron energy in eV Ttemp=linspace(tmin,tmax,500); % for n=1:length(eEmeV); %main loop in energy beta=1./(kB*Ttemp); %inverse thermal energy in J nq=1.0./(exp(beta*wLO*echarge/1000)-1.0);%Bose thermal occupation factor %keE=sqrt(2*m0*ms*eE)/hb;%electron wave vector in m^-1 % tmp1=abs((sqrt(eEmeV+wLO)+sqrt(eEmeV))./(sqrt(eEmeV+wLO)-sqrt(eEmeV))); % tmp2=abs((sqrt(eEmeV)+sqrt(eEmeV-wLO))./(sqrt(eEmeV)-sqrt(eEmeV-wLO))); % g1=nq*log(tmp1);%phonon absorption % g2=(nq+1.0)*log(tmp2);%phonon emission tmp1=2*asinh(sqrt(eEmeV(n)/wLO)); tmp2=2*asinh(sqrt((eEmeV(n)-wLO)/wLO)); tmp2=real(tmp2);%remove terms when eEmeV