%FigG_2 %Zero temperature Lindhard dielectric funtion in GaAs with or without %longitudinal optical phonons; clear; FS = 12; %label fontsize 18 FSN = 12; %number fontsize 16 LW = 1; %linewidth % Change default axes fonts. set(0,'DefaultAxesFontName', 'Times'); set(0,'DefaultAxesFontSize', FSN); % Change default text fonts. set(0,'DefaultTextFontname', 'Times'); set(0,'DefaultTextFontSize', FSN); %hbar_txt=['\fontname{MT Extra}h\fontname{Arial}']; n1=1.e18; %electron carrier concentration (cm^-3) n=n1*1.e6; %convert to m^-3 m0=9.1095e-31; %bare electron mass ms=0.07; %effective electron mass in conduction band wLO=36.3; %longitudinal optic phonon energy (meV) wTO=33.3; %transverse optic phonon energy (meV) einf=11.1; %high frequency dielectric constant hb=1.05459e-34; %Plank constant (J s) e=1.60219e-19; %electron chanrge (C) a0=0.529177e-10; %Bohr radius (m) kf=(3*(pi^2)*n)^(1/3); %Fermi wave vector (m^-1) kf1=kf*1e-2; %Fermi wave vector (cm^-1) Ef=((hb*kf)^2)/(2*m0*ms); %Fermi energy (eV) Ef=(Ef*1e3)/e; %Fermi energy (meV) wLO2=(wLO/Ef)^2; wTO2=(wTO/Ef)^2; zeta=ms/(pi*kf*a0); gamma=.01; %Energy broadening (GAMMA / Ef) 0.01 x=0.1; %Wave vector (k/kf) 0.1 zeta=zeta/x^3; a4=2*x; %[ start:increment:stop]; y=[0:.01:2.0]+i*gamma; %energy loss OMEGA/Ef a1=(1-1/4*(x-y/x).^2).*log((y-x*(x+2))./(y-x*(x-2))); a2=(1-1/4*(x+y/x).^2).*log((-y-x*(x+2))./(-y-x*(x-2))); a3=zeta*(a4+a1+a2); %with LO phonons %epsi=((y./(y-i*gamma)).*a3)+(einf*((y.^2-wLO2)./(y.^2-wTO2))); %without phonons epsi=((y./(y-i*gamma)).*a3)+einf; figure(1); %plot real and imaginary epsilon plot(real(y)*Ef,real(epsi),'b'); hold on; plot(real(y)*Ef,imag(epsi),'r'); axis([0 100 -600 800]); ttl=['\rmFigG.2, \itn\rm_0=',num2str(n1,'%5.1e'),' cm^{-3}, \itm\rm^*_e=',num2str(ms),... '\times\itm\rm_0, \itE\rm_F=',num2str(Ef,'%5.1f'),' meV, \itk\rm_F=',num2str(kf, '%5.1e'),... ' cm^{-1}, \itX\rm=',num2str(x),'\times\itk\rm_F, \gamma=',num2str(gamma),'\times\itE\rm_F']; title(ttl); x1=Ef; yscale=ylim; y1=yscale(2)/2; y2=y1*1.2; y3=y1*1.4; y4=y1*1.6; text(x1,y1,['\itk\rm_F = ',num2str(kf1, '%5.1e'),' cm^{-1}']); text(x1,y2,['\itX\rm = ',num2str(x),'\times\itk\rm_F, \gamma = ',num2str(gamma),'\times\itE\rm_F']); %text(x1,y3,[hbar,'\omega_{LO} = ',num2str(wLO),' meV, ',hbar,'\omega_{TO} = ',num2str(wTO),' meV']); text(x1,y4,['\epsilon_{r\infty} = ',num2str(einf)]); xttl=['Energy loss, $\hbar\omega$ (meV)']; xlabel(xttl,'Interpreter','latex'); ylabel('Dielectric function, \epsilon'); hold off; figure(2); %plot loss function plot(real(y)*Ef,-imag(1./epsi),'r'); title(ttl); xlabel('Energy loss, $\hbar\omega$ (meV)', 'Interpreter', 'latex'); ylabel('Loss function, -Im/\epsilon'); hold on; %keep current plot in the figure; %axis manual axis([0 100 0 5]); plot(real(y)*Ef,-imag(100./epsi),'k'); %plot 100x y-axis to see detail structure yscale=ylim; y1=yscale(2)/2; text(x1,y1,['x100']); hold off;