%Fig_5_5.m %optical Lorentz dielectric constant and optical reflectivity; clear all; clf; FS = 18; %label fontsize 18 FSN = 16; %number fontsize 16 LW = 2; %linewidth % Change default axes fonts. set(0,'DefaultAxesFontName', 'Times New Roman') set(0,'DefaultAxesFontSize', FSN) % Change default text fonts. set(0,'DefaultTextFontname', 'Times New Roman') set(0,'DefaultTextFontSize', FSN) hbar=['\fontname{MT Extra}h\fontname{Times New Roman}']; eye=complex(0,1); m0=9.1095e-31; %bare electron mass [kg] hbar=1.05459e-34; %Plank constant hbar [J s] echarge=1.60219e-19; %electron charge [C] clight=2.997924e8; %speed of light [m s^-1] epsilon0=8.854187e-12; %permittivity of free space [F m^-1] n0=12.75e28; %electron density [m^-3] 1e25 is 1e19cm^-3 wp2=n0*echarge^2/(epsilon0*m0); wp=sqrt(wp2); %plasma frequency [rad s^-1] w0=1.00*wp/3.317; %resonant frequency in terms of wp, %set to zero for no atom restoring force 0.80 w02=w0^2; Ep=hbar*wp/echarge; %plasma energy [eV] Ep2=Ep^2; E0=hbar*w0/echarge; E02=E0^2; gamma=E0/8; %broadening [eV] E0/8 Ep*8e-2 1.81 meV npoints=20000; %number of points in plot y1min=0.001*Ep; %minimum energy in plot y1max=1.5094*Ep; %maximum energy in plot y1=linspace(y1min,y1max,npoints); %energy [eV] y2=y1+(eye*gamma); %************************************************************************* % epsilon complex permittivity of dielectric %************************************************************************* eps=1-(Ep2./((y1.*y1-E02)+(eye*y1*gamma))); x =1./((y1.*y1-E02)+(eye*y1*gamma)); % position x x1 =1./((y1.*y1-E02)+(eye*y1*gamma*2)); %position x with 2x damping x2 =1./((y1.*y1-E02)+(eye*y1*gamma*4)); %position x with 4x damping %************************************************************************* ttl=['\it{n}\rm_0=',num2str(n0/1e28,'%5.1f'),... '\times10^{28}m^{-3}, \it{E}\rm_{0}=',... num2str(E0,'%5.2f'),'eV, \it{E_{p}}\rm=',... num2str(Ep,'%5.2f'),'eV, \gamma=',num2str(gamma,'%5.2f'),'eV']; %************************************************************************* omega=y1*echarge/hbar; %omega [rad s^-1] n_index=(eps).^0.5; %complex refractive index k=n_index.*omega/clight;%complex wave vector [m^-1] vg_clight =omega./(y1*echarge/(clight*hbar));%velocity of light vp =omega./real(k);%phase velocity in medium is vp=omega/Re(k) %************************************************************************* %******* group velocity is v_g = d omega / d k *************************** %************************************************************************* for i=1:npoints-1 vg(i)=(y1max*echarge/(clight*hbar*(npoints+1)))/(real(k(i+1))-real(k(i))); end vg(npoints)=vg(npoints-1); %************************************************************************* figure(1); plot(real(k),omega./1e15,'b','LineWidth',LW); hold on; %grid on; plot(imag(k),omega./1e15,'r','LineWidth',LW); plot(omega/clight,omega./1e15,'r'); plot(0,w0*1e-15,'*'); plot(0,wp*1e-15,'o'); axis([0 1.1*max(real(k)) 0 max(omega./1e15)]); title('Real and imaginary part of \it{k}\rm') ylabel('Frequency, \omega (\times 10^{15} rad s^{-1})'); xlabel('Wave number, \it{k}\rm (m^{-1})'); hold off;