%Fig_6_3.m %real (blue) and imaginary (red) permittivity %Drude dielectric % clear all; clf; t=cputime; eye=complex(0.,1.); %square root of -1 %plotting parameters + fontsizes FS = 18; %label fontsize 18 FSN = 16; %number fontsize 16 LW = 2; %linewidth % Change default axes fonts. set(0,'DefaultAxesFontName', 'Times New Roman') set(0,'DefaultAxesFontSize', FSN) % Change default text fonts. set(0,'DefaultTextFontname', 'Times New Roman') set(0,'DefaultTextFontSize', FSN) hbar=['\fontname{MT Extra}h\fontname{Times New Roman}']; echarge =1.60219e-19; %electron charge [C] epsilon0 =8.8541878e-12;%permittivity of free-space [F m^-1] m0 =9.10956e-31; %bare electron mass [kg] meff =1.01*m0; %effective electron mass in Cu [kg] nelectrons =8.46e28; %electron density in Cu [m^-3] sigma0 =1.0*5.9e7; %DC conductity of Cu at room temperature [S m^-1] tau =sigma0*meff/(nelectrons*(echarge^2));%scattering time [s] delta =eye*1.0/tau; %broadening omegap2 =nelectrons*(echarge^2)/(meff*epsilon0);%plasma frequency squared omegap =sqrt(omegap2); %plasma frequency [rad s^-1] omegapeV =sqrt(omegap2)*6.58211889e-16;%plasma energy [eV] omegap2tau =omegap2*tau; omegap2tau2=omegap2*tau^2; omegamin=2*pi*1000e12; omegamax=2*pi*3000e12; npoints=3000; omega =linspace(omegamin,omegamax,npoints); %frequency [rad s^-1] omega2tau2=omega.^2*tau^2; epsilon1 =1-(omegap2tau2./(1+omega2tau2));%real permittivity epsilon2 =(omegap2tau)./(omega.*(1+omega2tau2));%imaginary permittivity %************************************************************************** ttl=['\sigma_{0} = ',num2str(sigma0,'%3.2e'),' S m^{-1}, \it{n}\rm_0 = ',... num2str(nelectrons,'%3.2e'),' m^{-3}, \tau = ',... num2str(tau*1e15,'%2.0f'),' fs, \omega_p = ',... num2str(omegap/(2e12*pi),'%2.1f'),' THz']; %************************************************************************** omega=omega+delta; omega2tau2=omega.^2*tau^2; epsilon=1-((omega./(omega-delta)).*(omegap2tau2./(1+omega2tau2))); %************************************************************************** figure(1); subplot(2,1,1);plot(real(omega./(2e12*pi)),(real(epsilon)),... 'b','LineWidth',LW); %plot real part hold on; %grid on; plot(real(omega./(2e12*pi)),(imag(epsilon)),... 'r','LineWidth',LW); %plot imag part xlabel('Frequency, \it{f}\rm (THz)'); ylabel('\epsilon_r(\it{f}\rm)'); axis([omegamin/(2e12*pi),omegamax/(2e12*pi),... min(epsilon1)*1.1,max(epsilon1)*6.1]) title(ttl); subplot(2,1,2),plot(real(omega./(2e12*pi)),... -imag(1./epsilon),'k','LineWidth',LW); %plot loss function xlabel('Frequency, \it{f}\rm (THz)'); ylabel('S(\it{f}\rm)'); axis([omegamin/(2e12*pi),omegamax/(2e12*pi),0,1.1*max(-imag(1./epsilon))]); hold off