%Fig_6_8.m % %Drude dielectric % clear all; clf; t=cputime; %plotting parameters + fontsizes FS = 18; %label fontsize 18 FSN = 16; %number fontsize 16 LW = 2; %linewidth % Change default axes fonts. set(0,'DefaultAxesFontName', 'Times New Roman') set(0,'DefaultAxesFontSize', FSN) % Change default text fonts. set(0,'DefaultTextFontname', 'Times New Roman') set(0,'DefaultTextFontSize', FSN) hbar=['\fontname{MT Extra}h\fontname{Times New Roman}']; eye =complex(0.,1.); %square root of -1 clight =2.99792458e8; %speed of light in vacuum [m s^-1] echarge =1.60219e-19; %electron charge [C] epsilon0 =8.8541878e-12;%permittivity of free-space [F m^-1] mu0 =4*pi*1e-7; %periability of free space [H m^-1] m0 =9.10956e-31; %bare electron mass [kg] meff =1.01*m0; %effective electron mass in Cu [kg] nelectrons =8.46e28; %electron density in Cu [m^-3] sigma00 =1.0*5.9e7; %DC conductity of Cu at room temperature [S m^-1] tscale=[0.01, 0.1, 1];%tau scale for ii=1:1:3 %DC conductity of Cu at room temperature [S m^-1] sigma0 =sigma00*tscale(ii); tau =sigma0*meff/(nelectrons*(echarge^2));%scattering time [s] delta =eye*1.0/tau; %broadening omegap2 =nelectrons*(echarge^2)/(meff*epsilon0);%plasma frequency squared omegap =sqrt(omegap2);%plasma frequency [rad s^-1] omegapeV =sqrt(omegap2)*6.58211889e-16;%plasma energy [eV] omegap2tau =omegap2*tau; omegap2tau2 =omegap2*tau^2; omegamin=2*pi*1000e6; %minimum frequency in plot 2*pi*1000e6 2*pi*1000e12 [rad s^-1] omegamax=2*pi*10000e12; %maximum frequency in plot [rad s^-1] 10000e12 npoints=1000000; %100000 omega =linspace(omegamin,omegamax,npoints); %frequency [rad s^-1] omega2 =omega.^2; omega2tau2 =omega2*tau^2; klight =omega/clight; epsilon = 1-(sigma0*tau./(epsilon0*(1+omega2tau2))); epsilon =epsilon+(eye*sigma0./(epsilon0*omega.*(1+omega2tau2))); x =tau./((omega.*(eye+omega.*tau)));% position x if ii==1 xconst=max(abs(x));%normalization constant end x =x./xconst; kx =sqrt(omega2.*epsilon)/clight; kkx =sqrt(omega2-omegap2)/clight; n_index =clight*kx./omega;%complex refractive index nr =real(n_index);%real part of refractive index nrimag =imag(n_index);%imaginary part of refractive index aclight =omega./klight; vgroup=zeros(npoints,1); for i=1:1:npoints-1 vgroup(i) =(omega(i+1)-omega(i))/(real(kx(i+1))-real(kx(i))); end vgroup(npoints)=vgroup(npoints-1); ttl=['\sigma_{0} = ',... num2str(sigma0,'%3.2e'),' S m^{-1}, \it{n}\rm_0 = ',... num2str(nelectrons/1e28,'%3.2f'),'\times10^{28} m^{-3}, \tau = ',... num2str(tau*1e15,'%2.0f'),' fs, \it{E}\rm_p = ',... num2str(omegapeV,'%2.1f'),' eV']; %************************************************************************* figure(1) %reflectivity from vacuum at normal incidence reflect=(abs((n_index-1)./(n_index+1))).^2; plot(log10(omega./(2e9*pi)),reflect,'b','LineWidth',LW); hold on; %grid on; % plot(E0,0,'*'); % plot(Ep,0,'o'); title(ttl); xlabel('Frequency, log_{10}(\it{f}\rm) (GHz)'); ylabel('\it{R}\rm'); %hold off; axis([log10(omegamin/(2e9*pi)),log10(omegamax/(2e9*pi)), 0, 1.1]); %************************************************************************* figure(2) ttl10a=['Amplitude, log_{10}|\it{x}\rm_0(\omega)|']; ttl10b=['Phase, \phi (radians/\pi)']; displacement=abs(x); phase=atan2(-imag(x),-real(x)); subplot(2,1,1);plot(log10(omega./(2e9*pi)),... log10(displacement),'b','LineWidth',LW); hold on; %grid on; title(ttl); ylabel(ttl10a); axis([log10(omegamin/(2e9*pi)),log10(omegamax/(2e9*pi)), -8, 2]); subplot(2,1,2);plot(log10(omega./(2e9*pi)),phase/pi,'r','LineWidth',LW); hold on; %grid on; xlabel('Frequency, log_{10}(\it{f}\rm) (GHz)'); ylabel(ttl10b); axis([log10(omegamin/(2e9*pi)),log10(omegamax/(2e9*pi)), 0, 1.1]); end hold off